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Abstract 

Background:  Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chroma-
tin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromatin, 
followed by DNA sequencing (xChIP-seq), is traditionally the method for mapping histones onto DNA elements. But 
since sonication fragmentation precedes ChIP, there is a consequent loss of information about chromatin higher-
order structure. Here, we present a new method, xxChIP-seq, employing antibody binding to fixed intact in situ 
chromatin, followed by extensive washing, a second fixation, sonication and immunoprecipitation. The second fixa-
tion is intended to prevent the loss of specifically bound antibody during washing and subsequent sonication and to 
prevent antibody shifting to epitopes revealed by the sonication process. In many respects, xxChIP-seq is comparable 
to immunostaining microscopy, which also involves interaction of the primary antibody with fixed and permeabilized 
intact cells. The only epitopes displayed after immunostaining are the “exposed” epitopes, not “hidden” by the fixa-
tion of chromatin higher-order structure. Comparison of immunoprecipitated fragments between xChIP-seq versus 
xxChIP-seq should indicate which epitopes become inaccessible with fixation and identify their associated DNA 
elements.

Results:  We determined the genomic distribution of histone variants H1.2 and H1.5 in human myeloid leukemia 
cells HL-60/S4 and compared their epitope exposure by both xChIP-seq and xxChIP-seq, as well as high-resolution 
microscopy, illustrating the influences of preserved chromatin higher-order structure in situ. We found that xChIP and 
xxChIP H1 signals are in general negatively correlated, with differences being more pronounced near active regulatory 
regions. Among the intriguing observations, we find that transcription-related regions and histone PTMs (i.e., enhanc-
ers, promoters, CpG islands, H3K4me1, H3K4me3, H3K9ac, H3K27ac and H3K36me3) exhibit significant deficiencies 
(depletions) in H1.2 and H1.5 xxChIP-seq reads, compared to xChIP-seq. These observations suggest the existence of 
in situ transcription-related chromatin higher-order structures stabilized by formaldehyde.

Conclusion:  Comparison of H1 xxChIP-seq to H1 xChIP-seq allows the development of hypotheses on the chromo-
somal localization of (stabilized) higher-order structure, indicated by the generation of “hidden” H1 epitopes following 
formaldehyde crosslinking. Changes in H1 epitope exposure surrounding averaged chromosomal binding sites or 
epigenetic modifications can also indicate whether these sites have chromatin higher-order structure. For example, 
comparison between averaged active or inactive promoter regions suggests that both regions can acquire stabilized 
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Introduction
Histone H1 plays a distinctly different structural and 
functional role in eukaryotic nuclei compared to the 
inner (core) histones H4, H3, H2A and H2B. Whereas 
the inner histones form a defined octamer complex sur-
rounded by a DNA wrapping (the nucleosome), H1 is 
positioned outside the nucleosome. The central H1 glob-
ular domain is at/near the dyad axis, flanked by N- and 
C-terminal peptide tails, believed to be associated with 
linker DNA connecting adjacent nucleosomes [1–8]. 
The inner histones maintain the stability and conforma-
tional flexibility of the nucleosome, which represents the 
fundamental “structural quantum” of chromatin [9, 10]. 
Histone H1 is essential for maintaining the stability and 
plasticity of polynucleosomal higher-order structure 
in  vivo. Recent studies suggest that linker histones are 
acting as a dynamic liquid-like glue for chromatin rather 
than forming fixed, stable complexes with nucleosomes 
[11, 12].

The stoichiometry of histone H1 per histone octamer 
has been estimated to be ~ 0.8–1.0 in somatic cells [13, 
14]. Generally, six isotypes (variants) are observed in 
somatic human cells: H1.0, H1.1, H1.2, H1.3, H1.4 and 
H1.5 [5, 15–17]. In  vitro, the presence of histone H1 is 
required to condense polynucleosomal chains at physi-
ological ionic strength. The C-terminal tail of histone 
H1 is more important to the formation of chromatin 
higher-order structure than is the N-terminal tail, which 
still plays a role [4, 18]. Genetic loss of certain histone 
isotypes can apparently be compensated by H1 isotype 
redundancy, until the stoichiometry of H1/nucleosome 
becomes too low, resulting in embryonic lethality, possi-
bly due to chromatin decompaction [14].

Several studies have examined the in  situ enrichment 
(or depletion) of DNA functional elements at the bind-
ing sites of various H1 isotypes [19–22]. These studies 
employed H1 xChIP-seq on a variety of undifferentiated 
and differentiated cells, fixed with formaldehyde, fol-
lowed by sonication and subsequent immunoprecipita-
tion. It has been argued that in differentiated cells, H1.5 
is associated with compacted heterochromatin, involved 
with repression of transcription and does not overlap 
enhancers [22]. In addition, data have been published 
that H1.2 and H1.3 are depleted from GC- and gene-rich 
regions, active promoters and transcription start sites 
(TSS); but enriched in AT-rich regions and “gene deserts” 
[19]. H1.2 has been described as “showing the most 

specific pattern and strongest correlation with low gene 
expression” [21]. It has also been stated that H1.2 and 
H1.5 are depleted from CpG-dense regions and active 
regulatory regions [20]. The authors of the latter study 
argue that there is an overrepresentation of depleted 
regions of all H1 subtypes at promoters.

In the present study, the chromatin distributions of 
two isotypes (H1.2 and H1.5) were examined within the 
nuclei of the human myeloid leukemia cell line HL-60/
S4 in situ. Two chromatin immunoprecipitation methods 
were employed, and their results compared; i.e., xChIP-
seq and xxChIP-seq, see Fig. 1 for a schematic explana-
tion of these two methods. In the standard xChIP-seq 
method, formaldehyde-fixed and permeabilized cells are 
sonicated to nucleosome-size fragments, prior to incu-
bation with antibody and immunoprecipitation. In the 
newer xxChIP-seq method [23], which was designed to 
“parallel” immunostaining microscopy, fixed and per-
meabilized cells are incubated with primary antibody, 
washed and fixed a second time, prior to sonication and 
immunoprecipitation. The second fixation is intended to 
prevent the loss or shifting of specifically bound antibody 
during the washing and processing of antibody-bound 
fragments. Thus, while information about the influence of 
chromatin higher-order structure on H1 distribution and 
epitope exposure is lost using xChIP-seq, it is preserved 
in xxChIP-seq. A comparison of similarities and differ-
ences between the results of xChIP-seq and xxChIP-seq, 
employing anti-H1.2 and H1.5, provokes speculations 
about the possible influences of in situ chromatin higher-
order structure and function upon H1 epitope exposure.

Materials and methods
Cell culture and antibodies
The human myeloid leukemia cell line HL-60/S4 (ATCC, 
CRL-3306) was maintained in RPMI-1640 medium plus 
10% FCS and 1% Pen/Strep/Glut. Cells were grown in 
6 ml of medium in T-25 flasks, generally split (1:6–1:12) 
2–3 times/week. For large-scale preps, cells were grown 
in T-75 flasks with up to 30  ml media. Cell concentra-
tions were monitored using a hemocytometer. Rab-
bit polyclonal ChIP-grade antibodies were obtained 
from Abcam: anti-histone H1.2 (ab4086) and anti-H1.5 
(ab18208). Both antibodies are directed against antigenic 
determinants within the N-terminal 1-100 aa residues.

higher-order structure with hidden H1 epitopes. However, the H1 xChIP-seq comparison cannot define their differ-
ences. Application of the xxChIP-seq versus H1 xChIP-seq method is particularly relevant to chromatin-associated 
proteins, such as linker histones, that play dynamic roles in establishing chromatin higher-order structure.
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Immunostaining and STED imaging
Images of immunostained cells were obtained on a Leica 
SP8 confocal microscope and on a home-built STED 
microscope, as described previously [24]. H1.2 and H1.5 
domain sizes were determined using custom-written 
software in Matlab to analyze STED/confocal image pairs 

acquired on our STED microscope. Domains in confocal 
images were user-identified and fit to a two-dimensional 
(2D) Gaussian intensity profile to determine the full-
width at half-maxima (FWHM) in the X- and Y-direc-
tions. For STED images, domains were programmatically 
segmented starting with the brightest (i.e., the highest 

Fig. 1  A scheme explaining the difference between the xChIP-seq and xxChIP-seq protocols. Note that the DNA sequences that are associated 
with “hidden” epitopes in situ are revealed by xChIP-seq, but not with xxChIP-seq. This scheme does not specify the type of chromatin higher-order 
structure involved in creating the “hidden” H1 epitope. “Masking” proteins, capable of “blocking” the H1 epitope in vivo, certainly can exist. Probably, 
the first formaldehyde fixation will covalently attach these proteins to H1 (and mask the epitope), such that the sonicated products cannot be 
immunoprecipitated at any point in the protocol. The xxChIP-seq versus the xChIP-seq comparison depends upon the differences in “exposed” H1 
epitopes. If the masking protein is “knocked-off” during the xChIP sonication, exposing the H1 epitope, it will “mimic” higher-order structure, which 
is (presumably) also destroyed during the xChIP sonication, exposing H1 epitopes. “Higher-order chromatin structure” is only detected after anti-H1 
binding, washing, a second formaldehyde fixation and sonication (xxChIP). Any exposure of H1 epitopes, at this point, will be undetected, since 
there is no further incubation with anti-H1 antibodies. Immunoprecipitation occurs because the Protein A/G agarose captures chromatin fragments 
by their covalently bound IgG (anti-H1) molecules
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summed intensity in a local region of interest) domains 
and fit to a 2D Lorentzian intensity profile to determine 
FWHM. Lorentzian fits were rejected if the fitting rou-
tine resulted in a negative amplitude, a center location 
outside the local region of interest, or if the fractional 
uncertainty in the fitted width was greater than 60%. In 
a given STED image, the domain segmentation was ter-
minated whenever 50% of the 20 most recent attempted 
Lorentzian fits were rejected. The distribution of domain 
sizes was generated using the average X and Y FWHM 
for each fitted domain.

ChIP‑seq
All ChIP-Seq experiments were performed on undiffer-
entiated HL-60/S4 cells that were fixed, permeabilized 
and stored in cryovials (containing ~ 107 cells/cryovial) in 
liquid Nitrogen. Prior to storage, the cells were harvested 
from growth medium at ~ 106 cells/ml, centrifuged and 
washed with PBS, fixed in 1% HCHO/PBS for 10 min at 
room temperature (RT), stopped with 0.125  M glycine 
for 5  min, washed with PBS, followed by PBS + 0.1  M 
PMSF. The fixed cells were permeabilized for 10  min at 
4 °C in a lysis buffer containing 25 mM HEPES buffer (pH 
7.8), 1 mM MgCl2, 10 mM KCl, 0.1% NP40, 1 mM DTT 
and 0.5 mM PMSF. Following centrifugation and removal 
of supernatants, cell pellets were frozen in residual lysis 
buffer at liquid Nitrogen temperature.

For both single-fixation and double-fixation ChIP 
(xChIP and xxChIP, see Fig. 1), chromatin was disrupted 
with a Covaris Focused Ultrasonicator M220. In xChIP, 
each frozen cell pellet (1 cryovial) was dispersed in 130 µl 
of Covaris Sonication Buffer (1 mM EDTA, 10 mM Tris 
[pH 7.6], 0.1% SDS), followed by sonication (20 min, 200 
cycles, 75 Watts, Duty Cycle 20%, 7  °C). The sonicates 
were centrifuged at 18,000xg, 10 min, 4 °C and the super-
natants recovered. SDS was reduced in the supernatants 
to ~ 0.003% and replaced with 0.05% Tween-20, employ-
ing repeated dilution with PBST (PBS + 0.05% Tween-
20) and centrifugal concentration using a Centricon 
YM-50. Six centrifugations of ~ 1/2 dilutions with PBST 
at 1000×g, 10 min resulted in ~ 0.5 ml of the final reten-
tate with reduced SDS. IgG-free BSA (Sigma A3294) was 
added to a final BSA concentration of 5%.

In xxChIP, the once-fixed frozen cell pellets were dis-
persed in a buffer reminiscent of the permeabilizing 
buffer used in immunostaining reactions (0.1% Triton 
X-100, 0.1  mM PMSF plus Sigma Protease Inhibitor 
Cocktail [P8340]) for 20  min at RT. After PBS washes, 
the permeabilized cells were suspended in PBST + 5% 
IgG-free BSA (PBSTB) and rotated for 90 min at RT. To 
300-µl aliquots containing ~ 6 × 107 cells, the primary 
antibody was added: 30  µl anti-histone H1.2 (1  mg/ml) 
or 60  µl anti-histone H1.5 (0.5  mg/ml). The cells plus 

antibody were rotated for 4 h at RT. Following antibody 
incubation, the cells were washed several times with PBS 
to remove unbound antibody. For the second fixation, 
the washed cells were made 1% HCHO/PBS and rotated 
2.5 min at RT. Fixation was stopped with 0.125 M glycine 
for 5 min, cells washed with PBS and dispersed in 1.0 ml 
of Covaris Sonication Buffer (1 mM EDTA, 10 mM Tris 
[pH 7.6], 0.1% SDS), followed by sonication at optimized 
conditions (40  min, 400 cycles, 75 Watts, Duty Cycle 
26%, 7 °C). The sonication buffer was replaced with PBST, 
employing centrifugal concentration, as described above.

Of necessity, the immunoprecipitation (IP) protocols 
differed slightly, comparing xChIP to xxChIP. The xChIP 
preparations in PBSTB buffer were incubated with con-
trol agarose (1 h, with rotation) and recovered from the 
minicolumns by centrifugation at 4 °C. Samples of these 
“cleaned” sonicates were retained as “Input”. Simultane-
ously, Protein A/G agarose minicolumns, equilibrated 
in PBSTB, were incubated for 4–5  h with 4  µg of rab-
bit anti-histone H1.2 or H1.5, rotating at RT, followed 
by washing with PBSTB. The equilibrated and “cleaned” 
sonicates were incubated with the antibody-bound Pro-
tein A/G agarose minicolumns overnight, rotating at 
4  °C. Subsequently, the sonicate-bound columns were 
washed 5 times with PBSTB and 2 times with PBST, to 
remove unbound chromatin. Elution of the bound chro-
matin fragments was accomplished by addition of 50  µl 
of 100  mM NaHCO3 + 1% SDS, tumbling for 15  min at 
RT. After centrifugal recovery, a second elution with 
50  µl was performed, yielding ~ 100  µl of pooled eluate. 
The IP eluates were digested with RNAse and protein-
ase K, overnight at 65  °C. DNA was purified employing 
Sigma Gene Elute (NA1020-1KT). By contrast, xxChIP 
preparations, having the anti-H1 antibodies already 
bound and crosslinked to the chromatin fragments and 
in PBSTB buffer, were “cleaned” on the control agarose 
minicolumns, an aliquot removed for “Input” and the 
remainder incubated with Protein A/G agarose minicol-
umns overnight, rotating at 4 °C, followed by washing to 
remove unbound chromatin. Elution of the bound chro-
matin fragments and DNA purification were similar to 
the xChIP procedures.

ChIP‑seq analysis
xChIP-seq and xxChIP-seq with antibodies against his-
tone H1.2 and H1.5 were each performed in triplicate. 
Paired-end sequencing was conducted by the sequenc-
ing facility of the German Cancer Research Center 
(DKFZ) using Illumina HiSeq  2000 and processed with 
manufacturer’s software HCS 2.2.58 and RTA 1.18.64. 
xChIP and xxChIP sequencing data were aligned to the 
human genome hg19 using Bowtie2 [25] allowing up to 
2 mismatches and accepting only uniquely mappable 
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reads. Regions enriched with H1.2 and H1.5 binding 
were determined by peak calling with MUSIC [26] using 
default parameters. We determined ~ 60,000–70,000 
peaks per replicate per condition and then merged the 
peaks for all triplicates within each condition. Regions 
dominated by H1.2 over H1.5 (and vice versa) were deter-
mined using NucTools [27] for a 100-bp sliding window, 
considering only windows with relative standard devia-
tion between the three replicates within each condi-
tion < 0.5 and the relative difference between the average 
occupancy of H1.2 and H1.5 > 0.99. Chromosome-wide 
signals were visualized using the IGV genome browser 
with 1000-bp smoothing window. Fold enrichment of sig-
nals in genomic regions were calculated using BedTools 
commands intersectBed and shuffle [28] as a ratio of the 
observed number of regions overlapping between two 
features of interest to the number of overlapping regions 
expected by chance. Average aggregate profiles were cal-
culated using HOMER [29]. The profile plotted is the 
value of the xChIP or xxChIP signal divided by the cor-
responding Input.

External datasets
The whole-genome bisulfite sequencing reported in 
our recent study [30] is available in the ENA database 
under accession PRJEB27665. ChIP-seq of histone H3, 

epichromatin, and histone modifications reported in our 
previous publication [31] are available in the GEO data-
base (GSE90992). ChIP-seq datasets of Pol 2, H3K27ac, 
H3K4me1 and ERG1 in HL-60 cells published in [32] 
were kindly provided by Marco Trizzino in the form of 
BED files with peaks (hg19 genome assembly). ChIP-
seq datasets of REST, CTCF, GABPA, JMJD1C, SMC3, 
SPI1 and STAG1 in HL-60 cells were obtained from the 
ReMap database [33] in the form of BED files with peaks 
(hg19). Coordinates of DNase I-sensitive regions deter-
mined by the ENCODE consortium in HL-60 cells [34] 
were obtained in the form of BED files (hg19) from the 
GEO database (GSM736595), and two replicates were 
merged together.

Results
Immunostaining of interphase nuclei with anti‑H1.2 
and H1.5 demonstrates punctate structures
Previous studies [12, 24] have revealed that punctate 
chromatin structures (“chromomeres”) can be observed 
within fixed and permeabilized interphase nuclei and 
mitotic chromosomes of HL-60/S4 cells by immu-
nostaining with bivalent rabbit anti-histone H1.5. Similar 
punctate structures were also observed in HL-60/S4 cells 
employing the monovalent Fab fragment from the mouse 
mAb PL2-6, an autoimmune antibody directed against 

Fig. 2  Images and statistics of size distributions of H1.2 (a–c) and H1.5 (d–f) punctate chromatin domains (“chromomeres”) based on confocal (a 
and d) and STED (b and e) microscopy. Cells were fixed with HCHO, permeabilized with Triton X-100/PBS and blocked with 5% normal goat serum/
PBS prior to immunostaining, as described earlier (24)
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the nucleosome “acidic patch” (consisting of acidic amino 
acid residues from histones H2A and H2B) [12, 24, 35, 
36]. Figure 2a–f and Additional file 1: Figure S1 present 
images of undifferentiated HL-60/S4 interphase nuclei 
immunostained with rabbit anti-H1.2 and with rabbit 
anti-H1.5. The chromomeric patterns are readily vis-
ible by both confocal and STED microscopy. Employ-
ing stimulated emission depletion (STED) microscopy 
yielded an estimate of the diameters of H1-enriched foci 
(anti-H1.2, ~ 60  nm; anti-H1.5, ~ 70  nm), approximately 
threefold smaller than the diameters estimated by confo-
cal imaging (~ 210 nm). As stated earlier [12, 24], we sug-
gest that these chromomeres may represent the fixed and 
stained equivalent of constrained polynucleosome clus-
ters observed by a variety of biochemical and microscopy 
methods (e.g., Hi-C, replication foci and TIRF micros-
copy). The punctate immunostaining pattern of H1 
epitope distribution likely reflects an in  situ chromatin 
higher-order organization within fixed interphase nuclei.

Chromatin immunoprecipitation (IP) with anti‑H1 
demonstrates differences in genomic element enrichment/
depletion
Currently, analysis of the genome-wide distribution 
of DNA-binding proteins (unmodified or modified by 
post-translational changes) is frequently performed 
by chromatin immunoprecipitation followed by DNA 
sequencing (ChIP-seq). Usually the intact cells are fixed 
once with formaldehyde, followed by sonication to 
nucleosome-size fragments and subsequent IP (xChIP). 
However, information about the influence of in situ chro-
matin higher-order structure on protein (epitope) distri-
bution is largely lost during the sonication step, which 
precedes the IP step. We developed a modified ChIP-seq 
protocol to preserve information about the influence 
of in  situ chromatin higher-order structure on protein 
(epitope) distribution. The method involves two formal-
dehyde fixation steps: the first, of intact cells; the second, 
following permeabilization and antibody binding, but 
before sonication, IP and DNA sequencing (xxChIP-seq) 
[23]. A scheme comparing xChIP-seq and xxChIP-seq 
is shown in Fig.  1, for the specific situation of mapping 

the distribution of histone H1. This figure contrasts H1 
epitopes that are “exposed” in situ and H1 epitopes that 
are “hidden” by bound protein and/or chromatin higher-
order structure “masking”. The xxChIP-seq method 
was originally developed to define the DNA sequences 
within “epichromatin”, the surface of chromatin beneath 
the nuclear envelope by employing the bivalent mAb 
PL2-6 [12, 23, 24, 37]. In this situation, the epichro-
matin epitope, which is present on all nucleosomes, is 
largely “hidden” internally and “exposed” at the chroma-
tin surface. Performing both methods (xChIP-seq and 
xxChIP-seq) on the same cell type can furnish a detailed 
genome-wide comparison of “exposed” versus “hidden” 
epitope regions.

Employing xChIP-seq and xxChIP-seq with rabbit 
anti-histone H1.2 and H1.5 antibodies, we determined 
genome-wide distributions of these signals and using 
peak calling software MUSIC [26] determined the regions 
(peaks) with their enrichments. The average size of such 
peaks was around 2000 bp (Figure S2). xChIP H1.2 and 
xxChIP H1.2 and H1.5 were characterized on average by 
a slight depletion of GC content at about 500  bp from 
the peak summit, whereas in the case of xChIP H1.5, the 
peaks did not have any pronounced nucleotide signature 
(Additional file 1: Figure S3).

Figure 3a presents parallel tracks along human chromo-
some 7, illustrating the density of peaks enriched for his-
tones H1.2 and H1.5 xChIP-seq and xxChIP-seq, as well 
as several other epigenetic signals measured in HL-60/
S4 cells [23, 31] (see all other chromosomes in Additional 
file  1: Figure S4). Figure  3a illustrates interesting cor-
relations among several tracks. In the regions denoted 
by black arrowheads, there are more (compared to sur-
rounding regions) of xChIP-seq of domains enriched 
with H1.2 and H1.5, coupled with deficiencies for 
xxChIP-seq domains enriched with H1.2 and H1.5. This 
type of behavior might signify the presence of “hidden” 
H1 epitopes within the xxChIP-seq reads of H1.2 and 
H1.5, possibly due to the presence of higher-order chro-
matin structure (Fig. 1). Many of these regions also cor-
relate with enrichments of H3K4me1, H3K9ac, H3K27ac 
and RNA Pol II, all markers of transcription-permissible 

(See figure on next page.)
Fig. 3  Large-scale (low resolution) and small-scale (high resolution) comparisons between xChIP and xxChIP sequencing strategies. a H1 epitope 
“exposure” peak densities over chromosome 7, as measured by scanning with a window of 1000 base pairs: for xChIP H1.2 (dark blue), xChIP H1.5 
(magenta), xxChIP H1.2 (orange) and xxChIP H1.5 (green). Black arrowheads show enrichments (compared to surrounding regions) of xChIP-seq 
reads for H1.2 and H1.5, coupled with deficiencies for xxChIP-seq reads of H1.2 and H1.5 at the same locations. Also indicated are cytogenetic road 
marks, DNA lengths (mb), the epichromatin track [23], and tracks for the density of peaks enriched with H3K4me1, H3K9ac, H3K27ac, Pol II and 
SMC3. b Pairwise correlations between xChIP H1.2, xChIP H1.5, xxChIP H1.2 and xxChIP H1.5 signals, averaged over three replicates each, using a 
1000-bp sliding window. Note that xChIP H1.2 versus xChIP H1.5 and xxChIP H1.2 versus xxChIP H1.5 reveal clear positive correlations; whereas, 
the xChIP signals reveal negative correlations with the xxChIP signals. c and d Examples of genomic regions at high resolution, showing distinct 
patterns of histone occupancy for aligned reads of H1.2 (black) and H1.5 (orange) xChIP-seq. The raw xChIP-seq signal was smoothed by averaging 
with a 100-bp running window
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regions (based on published ChIP-seq, see Methods). 
Perhaps the formaldehyde-fixed transcriptional appara-
tus (transcription factories?) generates steric “hiding” of 
H1 epitopes in the xxChIP-seq assay. A systematic cor-
relation analysis comparing xChIP-seq and xxChIP-seq 
(with themselves and each other) is presented in Fig. 3b. 
It is of interest that H1.2 xChIP and H1.5 xChIP reveal a 
positive correlation at the kb scale, and that H1.2 xxChIP 
and H1.5 xxChIP demonstrate even better correlation. 
On the other hand, the xChIP signals reveal negative cor-
relation with the xxChIP signals. This latter observation 
supports the view that fixation-preserved in situ higher-
order chromatin structure results in a significant fraction 
of “hidden” H1 epitopes.

As it is clear from Fig. 3b, genome-wide H1.2 and H1.5 
xChIP signals are positively correlated. However, in a 
number of important regulatory locations we observed 
mutually excluding arrangements of H1.2 and H1.5. 
Such examples, shown in Fig. 3c, d, are characterized by 
“swings” of 3–5 nucleosomes in H1.2 and H1.5 linker his-
tone enrichment, with some regions exhibiting H1 iso-
type predominance for longer distances. We then set to 
define the locations of all such regions using NucTools 
with a sliding window of 100  bp. Interestingly, many 
such regions were at gene promoters. In particular, this 
analysis revealed 1715 regions where xChIP H1.2 domi-
nates over H1.5 (39.8% of them at promoters), and 5214 
regions where xChIP H1.5 dominates over H1.2 (44.2% 
of them at promoters). Thus, thousands of gene promot-
ers are enriched either with H1.2 or H1.5, suggesting that 
differential binding of H1 variants has functional impli-
cations. Gene Ontology analysis revealed that promoters 
with H1.2 or H1.5 dominance were enriched for genes 
related to ATP binding and enzymatic activity (Additonal 
file 2: Table ST1 and ST2).

Next, we analyzed the genome-wide distribution of 
regions enriched with xChIP and xxChIP H1 signals in 
relation to different genomic features defined using our 
previous ChIP-seq of histone modifications in HL-60/
S4 cells (25). Figure  4 presents a summary of the rela-
tive enrichment (or depletion) of various chromatin fea-
tures with H1.2 and H1.5 peaks determined by MUSIC 
peak calling based on xChIP-seq and xxChIP-seq. Some 
of the conclusions: (1) For most of the studied fea-
tures, H1.2 xChIP displays more enrichment, than H1.5 
xChIP. For example, H1.2 xChIP shows more enrich-
ment of enhancers, promoters, CpG islands, Alu repeats, 
H3K27ac, H3K36me3, H3K4me1, H3K9ac, H3K9me3 
and epichromatin. (2) xxChIP H1.2 and H1.5 signals 
resemble each other more than xChIP H1.2 and H1.5. 
(3) xxChIP generally shows more depletion of the stud-
ied chromatin features, than observed with xChIP, except 
for Alu and L1 repeats. To some extent, the differences 

observed comparing H1.2 and H1.5 xChIP are oblite-
rated when comparing H1.2 and H1.5 xxChIP. (4) Remi-
niscent of conclusions derived from the chromosome 
tracks displayed in Fig.  3a, transcription-related regions 
and “active” histone modifications (i.e., enhancers, pro-
moters, CpG islands, H3K4me1, H3K4me3, H3K9ac, 
H3K27ac and H3K36me3) are enriched in H1.2 and H1.5 
xChIP-seq and show significant depletions in H1.2 and 
H1.5 xxChIP-seq reads. These observations support that 
in  situ chromatin higher-order structures, “preserved” 
by formaldehyde fixation, can create “hidden” histone 
H1.2 and H1.5 epitopes. They also suggest that transcrip-
tion-related regions may have their own higher-order 
structure.

Differential enrichments of H1 variants 
around protein‑binding sites
The apparent occlusion of H1 epitopes, due to the preser-
vation of chromatin higher-order structure surrounding 
various chromatin protein-binding sites, is presented in 
Fig. 5. In the case of CTCF-binding regions, H1 xChIP-
seq profiles show weak oscillations that have been previ-
ously reported in a number of nucleosome positioning 
studies [38–40]. Interestingly, H1.2 and H1.5 variants are 
not distinguishable in this case. All other protein-binding 
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regions, presented in this figure, have distinct xChIP-seq 
profiles for H1.2 and H1.5. In addition, H1 xxChIP-seq 
profiles around CTCF-binding sites show strong deple-
tion compared to the H1 xChIP-seq profiles, suggesting 
that, in these localized fixed in situ chromatin regions, H1 
epitopes are “hidden” due to stabilization of higher-order 

structure. A similar clear depletion of H1 xxChIP-seq sig-
nals, compared to H1 xChIP-seq signals, was observed 
for other chromatin-binding proteins (e.g., EGR1, 
GABPA, JMJD1C, Pol II and REST). In terms of the dif-
ferences of the profile shapes between H1.2 and H1.5, 
two chromatin-binding proteins stand out: the subunits 

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

 H1.2 xChIP
 H1.5 xChIP
 H1.2 xxChIP
 H1.5 xxChIP

H
1 

ep
ito

pe
 e

xp
os

ur
e

Distance from CTCF (bp)

CTCFa

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

Distance from SMC3 (bp)

SMC3
b

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

Distance from STAG1 (bp)

STAG1c

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

H
1 

ep
ito

pe
 e

xp
os

ur
e

Distance from EGR1 (bp)

EGR1
d

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

Distance from GABPA (bp)

GABPA
e

-2000 0 2000
0.4

0.6

0.8

1.0

1.2 JMJD1C

Distance from JMJD1C (bp)

f

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

H
1 

ep
ito

pe
 e

xp
os

ur
e

Distance from Pol II (bp)

Pol II
g

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

Distance from REST (bp)

REST
h

-2000 0 2000
0.4

0.6

0.8

1.0

1.2

Distance from PU.1 (bp)

PU.1
i

Fig. 5  Profiles of H1 epitope exposure in HL-60/S4 cells, centered around different protein-binding sites on DNA as defined by ChIP-seq in HL-60 
cells (see Methods). The different DNA-binding proteins/functions: CTCF defines chromosome loops; SMC3, subunit of cohesin; STAG1, subunit 
of cohesin; EGR1, transcription factor (TF); GABPA, TF; JMJD1C, histone demethylase; Pol II, RNA polymerase; REST, TF; SPI1, TF. Note that the xxChIP 
profiles for H1.2 and H1.5 “track” together, which always display reduced H1 epitope exposure around the center of the binding site (0). Generally, 
the xChIP profiles track together, sometimes in the same direction as the xxChIP profiles (EGR1, GABPA, JMJD1C, REST and SPI1); sometimes in 
the opposite direction (CTCF and STAG1). Interestingly, both Pol II and SMC3 indicate a divergence of the xChIP profiles around the center of the 
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of cohesin SMC3 and STAG1. Their xxChIP-seq profiles 
show differences between H1.5 and H1.2 close to the 
center of the SMC3- and STAG1-binding sites, suggest-
ing differential roles of these H1 variants in interactions 
with cohesin. For these selected chromatin protein- 
binding regions, formaldehyde fixation appears to make 
H1 epitopes (whose presence is demonstrated in the 
xChIP-seq) inaccessible to antibody in the xxChIP-seq 
assay. Another case of a very pronounced difference is 
observed around PU.1-binding sites. Our previous analy-
sis showed that in HL-60/S4 cells PU.1 is associated with 
highly ordered nucleosome arrays with ~ 10  bp smaller 
nucleosome repeat length than genome-average [31]. A 
recent publication noted that PU.1 acts as a non-classical 
pioneer factor (not able to bind DNA in the nucleosome, 
but recruiting remodellers that redistribute nucleosomes) 
[41]. It seems that this nucleosomal organization exposes 
H1 epitopes in such a way that the xxChIP signal goes up.

“Open” chromatin regions have narrow xChIP and wide 
xxChIP depletion
Figure  6 presents average H1 epitope exposure around 
transcription start sites (TSS) for active and inactive 
genes. Active genes (Fig.  6a) show a significant differ-
ence between xChIP and xxChIP. The xChIP profiles 
contain a sharp and deep decline in apparent H1 occu-
pancy (~ 300 bp wide), corresponding to the nucleosome-
depleted region adjacent to the TSS. On the other hand, 
the xxChIP H1 epitope depletion extends to a ~ 10-fold 
longer region near the TSS, encroaching onto the gene 
body, suggesting an extended stabilized higher-order 
structure. In terms of the differences between H1.2 and 
H1.5, the epitope depletion of H1.5 is stronger, com-
pared to H1.2. For inactive genes (Fig.  6b), H1 xChIP-
seq profiles are essentially unchanged across the TSS 
regions. The “broad depletions” seen with both H1.2 and 
H1.5 xxChIP-seq suggest that higher-order chromatin 
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structure is a common feature of TSS regions, regard-
less of transcriptional activity. It could be that the deple-
tion of xxChIP signal at inactive promoters reflects the 
decrease of their in situ accessibility.

We then analyzed xChIP profiles around “open” 
chromatin regions in general. Figure  6c shows aver-
age xChIP and xxChIP profiles around DNase I-sen-
sitive sites in HL-60 cells, which are consistently with 
Fig. 6a. The profiles around CpG islands (Fig. 6d) show 
the largest depletion of xxChIP, consistently with Fig. 4. 
Interestingly, xChIP H1.2 and H1.5 profiles around 
CpG islands are significantly different from each other, 
consistently with our finding that most regions with 
“swings” of H1.2 or H1.5 xChIP investigated in Fig. 3c 
and d are located inside promoters. Collectively, this 
analysis supports the concept that chromatin regions 
which are traditionally believed to be “open” generally 
possess chromatin higher-order structure, which when 
fixed with formaldehyde in  vivo, results in decreased 
histone H1 epitope exposure.

Figure  7 presents average H1 epitope exposure pro-
files surrounding genomic regions enriched with dif-
ferent histone modifications. For verification, we have 
plotted profiles for H3K4me1, H3K27ac, H3K9ac and 
H3K36me3, using both the data that we reported for 
HL-60/S4 cells (25), as well as recent data for H3K4me1 
and H3K27ac in HL-60 cells [32]. For H3K4me1 (mark 
of active enhancers), K3K27ac and H3K9ac (general 
activating marks), we observed strong depletions of H1 
xxChIP epitope exposure, consistent with our previous 
analyses above. Interestingly, the profiles around cent-
ers of H3K36me3 domains (the mark of gene bodies of 
active genes) revealed less difference between xChIP 
and xxChIP epitope exposure, compared to the other 
shown histone modifications. Perhaps, this is because 
H3K36me3-enriched domains are wider than pro-
moter/enhancer marks and less focused on their ChIP-
seq peak summits. However, H3K36me3-domains did 
reveal a difference between H1.2 and H1.5 distribution, 
with enrichment of H1.2 and depletion of H1.5.

Influence of H1.2/H1.5 enrichment on the nucleosome 
repeat length (NRL)
NRL is defined as the average distance (bp) between 
the dyad axes of adjacent nucleosomes and is tradition-
ally used as an integrative parameter characterizing 
local nucleosome packing. Previous publications sug-
gest that NRL is different near binding sites of tran-
scription factors [42] and affected by the presence of 
linker histones, although the role of different H1 vari-
ants is not clear [43]. Figure  8 presents normalized 
calculations of the NRL in regions enriched for the H1 

variants, using the NucTools algorithm [27]. In the case 
of xxChIP, NRL was similar for H1.2 and H1.5 (191.8 bp 
and 188.8  bp, respectively). In the case of xChIP, the 
difference between H1.2 and H1.5 was slightly larger 
(190.6  bp and 184.5  bp, respectively). These measure-
ments suggest that chromatin regions enriched with 
either H1.2 or H1.5 may have different arrangements of 
nucleosomes.

Interplay between linker histones and DNA methylation
To investigate the relationship between linker histones 
and DNA methylation, we performed whole genome 
bisulfite sequencing profiling in HL-60/S4 cells [30]. 
From our previous publications it is known that DNA 
methylation profiles around nucleosomes have well-
defined patterns, which are significantly different 
depending on whether the nucleosome is located inside 
a CpG island or outside of CpG islands [38, 44]. There-
fore, in the following analysis we take nucleosomes 
previously mapped using MNase-assisted H3 ChIP-seq 
in HL-60/S4 cells [31], and split them into two classes 
depending on their location inside or outside CpG 
islands. Furthermore, we narrow down this dataset to 
take into account only those nucleosomes which are 
located inside genomic locations enriched with one of 
four H1-related signals determined here (xChIP H1.2 
and H.5 and xxChIP H1.2 and H1.5). Figure 9a, b dem-
onstrates the average DNA methylation profiles calcu-
lated around the centers (dyads) of nucleosomes split 
into these 8 classes.

Figure 9a shows the DNA methylation profiles around 
nucleosomes inside CpG islands. These profiles are 
consistent with the idea that CpG islands are in general 
depleted of nucleosomes, but those few nucleosomes 
that appear in CpG islands are strongly associated 
with DNA methylation. These profiles are very differ-
ent between xChIP and xxChIP, consistent with our 
previous calculations in Figs. 4 and 6d which show the 
largest differences between xChIP and xxChIP among 
all genomic features. DNA methylation profiles around 
nucleosomes outside of CpG islands are not so dra-
matically different between xChIP and xxChIP. Quan-
titatively, average DNA methylation profiles around 
all nucleosomes showed that DNA methylation was in 
general higher for xxChIP H1-enriched nucleosomes 
than xChIP H1-enriched nucleosomes. This can be 
explained by the increased CpG density in/near xxChIP 
DNA fragments, with both H1.2 and H1.5 xxChIP 
showing strong enrichment near CpGs (Fig.  9c). On 
the other hand, when we considered genome domains 
enriched with linker histones based on MUSIC peak 
calling, DNA methylation was depleted in the centers 
of the H1-enriched peaks and increased at a distance 
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about 500 bp from the centers of the peaks (Fig. 9d); the 
latter effect was consistent with the GC content signa-
tures of these peaks (Additional file 1: Figure S3). Thus, 
chromatin regions differentially enriched with H1.2/

H1.5 in xChIP/xxChIP are characterized by distinct 
DNA methylation profiles which may reflect differences 
in nucleosome packing.
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Fig. 7  H1 epitope exposure in undifferentiated HL-60/S4 cells surrounding average genomic regions enriched for different histone modifications. 
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Discussion
We used a combination of a newly introduced xxChIP-
seq method (23), together with traditional xChIP-seq 
(Fig. 1) to study the differential distribution and epitope 
“exposure” of linker histone variants H1.2 and H1.5 in 
the human leukemia cell line HL-60/S4. In xxChIP-seq, 
the first fixation stabilizes in  situ chromatin higher-
order structure, which is destroyed by the sonication 
step in xChIP. The unique feature of xxChIP-seq, com-
pared to xChIP-seq, is that the second formaldehyde 
fixation stabilizes specifically bound antibody dur-
ing washing, sonication and processing of antibody-
bound fragments. Occlusion of H1 epitope signals at a 
particular chromosomal site (i.e., epitope “hidden” in 
xxChIP, but “exposed” in xChIP) suggests the existence 
of higher-order chromatin structure at that particu-
lar site, but does not explain what this structure is. It 
is important to point out that “chromatin higher-order 
structure” exists at many scales. For example, “chro-
momeres” (i.e., formaldehyde fixed punctate chroma-
tin structures (12), shown in Fig.  2) may contain ~ 103 
or more nucleosomes (corresponding to ~ 2 × 105 or 
more bp). The peaks of H1 enrichment that we identify 
by xxChIP-seq are much smaller (~ 104 or less bp; see 
Additional file  1: Figure S2). So, a chromomere might 
contain ~ 20 or more of the structural regions identified 
by xxChIP-seq.

Our results indicate that H1.2 xChIP-seq and H1.5 
xChIP-seq signals are positively correlated; H1.2 
xxChIP-seq and H1.5 xxChIP-seq signals are also posi-
tively correlated; but H1 xChIP-seq versus H1 xxChIP 
signals are negatively correlated (Fig. 3a, b). These dif-
ferences between xChIP and xxChIP are visible along 
all human chromosomes (Fig. 3a and Additional file 1: 
Figure S4). While xChIP H1.2 and H1.5 signals are 
positively correlated genome wide, we identified sev-
eral thousand regions where H1.2 dominates over H1.5 
(or vice versa) at a “microdomain” scale, comprising a 
swing for a few nucleosomes (Fig. 3c, d). Interestingly, 
many of these are inside CpG islands and functional 
regulatory regions, with about 40% of them overlap-
ping with promoters enriched for genes encoding ATP-
binding proteins. Such “swings” between H1.2 and H1.5 
in small microdomains comprising few nucleosomes 
may correspond to “clutches” of nucleosomes reported 
recently [45]. It is worth noting that both xChIP and 
xxChIP report cell population-averaged data, whereas 
individual cells may experience intrinsic stochasticity 
of chromatin organization [46]. Thus, it is remarkable 
that we are able to observe few thousands of clutches 
of nucleosomes with mutually exclusive H1.2 or H1.5 
at functionally important regions, but it could be that 
individual cells have even more such regions which 

became cancelled out after averaging over the large 
population of cells in the bulk experiment.

It is important to emphasize that all types of tran-
scriptionally active or “open” regions such as CpG 
islands were more enriched by H1 xChIP than xxChIP, 
whereas Alu and L1 repeats were more enriched with 
H1 xxChIP (Fig.  4). Epichromatin regions (i.e., “sur-
face chromatin”), operationally defined by the binding 
of the bivalent mAb PL2-6 (12,23,24,34), were depleted 
within enriched H1 xxChIP peaks, but enriched within 
H1 xChIP peaks (Fig. 4), suggesting that epichromatin 
domains have unique chromatin structures with “hid-
den” H1 epitopes.

Several chromatin-bound proteins exhibited clear pref-
erences for “association” with regions enriched in dif-
ferent histone H1 variants (Fig. 5). In particular, regions 
associated with the cohesin subunits SMC3 and STAG1, 
as well as the proteins REST and RNA Pol II, were among 
those where the differences between H1.2 and H1.5 were 
more pronounced in xChIP-seq. The “non-classical pio-
neer factor” PU.1 [41], which is important for the fate of 
HL60/S4 cells, showed the opposite tendencies in xChIP 
and xxChIP average profiles, suggesting different types of 
PU.1-sensitive exposure of linker histones. Interestingly, 
the abundant CTCF-binding sites did not show prefer-
ences for the studied H1 variants. Our conception is that 
H1 epitope exposure correlates well with H1 “occupancy”, 
when considering xChIP-seq analysis, but less well when 
analyzing xxChIP-seq, because of the generation of “hid-
den” epitopes.

The investigation of the relationship between active/
inactive gene promoters and H1 binding revealed an 
unexpected observation. The depletion of H1.2 and 
H1.5 determined by xChIP is quite narrowly localized 
within ~ 200 bp of the active (but not inactive) TSS. This 
is consistent with the recently reported H1 xChIP-seq 
profiles in Drosophila embryonic development [47]. On 
the other hand, in the case of xxChIP-seq, the depleted 
region is much broader, covering more than 2  kb from 
TSS (Fig. 6). The latter effect for xxChIP can be observed 
both for active and inactive TSS. Comparing genomic 
regions enriched with different modifications of core 
histones (Fig. 7), we found that xChIP (but not xxChIP) 
detects large differences between H1.2 versus H1.5. In 
general, the level of H1.2 was higher than H1.5 for regions 
enriched with “active” post-translational modifications of 
core histones. The breadth of the “dip” around active TSS, 
as seen with xxChIP for anti-H1s, may be explained by 
the fact that active genes appear to associate with higher-
order structures; e.g., “hubs” or “factories” [48]. Presum-
ably, with xxChIP these complexes are better preserved, 
than in xChIP. We also cannot exclude that the second 
fixation in the xxChIP protocol might have preferentially 
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“stiffened” the nucleosome-depleted regions surrounding 
the TSS, making them less susceptible to sonication, but 
such effect, if present, does not explain the widening of 
the “open” region in xxChIP in comparison with xChIP. 
Thus, the most likely explanation of the widening of this 
region in xxChIP is the incorporation of H1 within the 
complexes of non-histone proteins. Interestingly, the sig-
nature around active TSSs is also sharper for H1.2 than 
H1.5 (Fig.  6a), which may be important for the role of 
H1.5 in binding over splice sites and regulating alterna-
tive splicing, as reported recently [49].

Our analysis also indicates some changes of nucleo-
some packing, characterized by an NRL change from 
190 to 184  bp for the areas enriched with H1.2 versus 
H1.5, respectively (Fig.  8). This suggests that different 
histone H1 variants can influence the structure of the 
nucleosome arrays, which may be accomplished by any 
of several different mechanisms, including a change in 
H1-nucleosome stoichiometry [43, 50]. Since we also 
observed that H1.2- versus H1.5-enriched regions are dif-
ferentially methylated (Fig. 9), it appears that enrichment 
of different linker histone variants can be an important 
determinant of the physical packing and activity of chro-
matin microdomains at the scale of several nucleosomes. 
These findings are consistent with the recently reported 
cooperativity between H1 histones and DNA methylation 
in repressing transposable elements [51] and in establish-
ing heterochromatin [52].

Given the acknowledged high in  vivo mobility and 
structural redundancy of different H1 variants, the pres-
ently described localizations and nuclear element enrich-
ments of H1.2 and H1.5 cannot be regarded as universal 
to other mammalian cells. Since undifferentiated HL-60/
S4 cells are the object of interest within this study, the 
next logical step could be to examine H1 xChIP-seq ver-
sus xxChIP-seq in the differentiated granulocyte and 
macrophage cell states [31], to identify how differential 
gene expression has influenced H1 localization. Fur-
thermore, the method reported here, comparing xChIP-
seq versus xxChIP-seq to ascertain whether a specific 
chromatin protein epitope is “hidden” due to chroma-
tin higher-order structure, has a general applicability to 
other cell types and other chromatin proteins.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1307​2-020-00345​-9.

Additional file 1: Additional Figures.

Additional file 2: Additional Table S1.

Additional file 3: Additional Table S2. 

Acknowledgements
We thank Marco Trizzino for providing processed ChIP-seq data and the DKFZ 
for hosting the visit of ALO and DEO.

Authors’ contributions
Designed and performed xChIP and xxChIP experiments: ALO and DEO; 
microscopy experiments: ALO, LB and TJG; DNA methylation experiments: EBA 
and NI; bioinformatics analysis: CTC and VBT; supervision: ALO, DEO, TJG, NI, 
VBT; wrote manuscript: ALO, DEO and VBT. All authors read and approved the 
final manuscript.

Funding
This work was funded by the Wellcome Trust 200733/Z/16/Z to VBT. TJG is 
supported by an Institutional Development Award (IDeA) from the National 
Institute of General Medicine at the National Institutes of Health under grant 
number P20GM103423.

 Availability of data and materials
xChIP and xxChIP datasets reported in this study are available in the GEO 
database (GSE136264).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 
3SQ, UK. 2 Department of Physics & Astronomy, Bates College, Lewiston, 
ME, USA. 3 Present Address: StarBird Technologies, LLC, Brunswick, ME, USA. 
4 Division of Theoretical Bioinformatics, German Cancer Research Center 
(DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany. 5 Molecular 
and Cellular Engineering, Centre for Biological Signalling Studies, Univer-
sity of Freiburg, Schänzlestraße 18, Freiburg im Breisgau 79104 , Germany. 
6 Charité - Universitätsmedizin Berlin, corporate member of Freie Universität 
Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 
Germany. 7 Department of Pharmaceutical Sciences, College of Pharmacy, 
University of New England, 716 Stevens Avenue, Portland, ME 04103, USA. 
8 Digital Health Centre, Berlin Institute of Health (BIH), Anna‑Louisa‑Karsch‑Str. 
2, Berlin 10178 , Germany. 

Received: 1 September 2019   Accepted: 13 May 2020

References
	1.	 Bednar J, Hamiche A, Dimitrov S. H1-nucleosome interactions and their 

functional implications. Biochim Biophys Acta. 2016;1859:436–43.
	2.	 Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A, Syed 

SH, Lone IN, Tonchev O, Crucifix C, et al. Structure and dynamics of 
a 197 bp nucleosome in complex with linker histone H1. Mol Cell. 
2017;66(384–397):e388.

	3.	 Crane-Robinson C. Linker histones: history and current perspectives. 
Biochim Biophys Acta. 2016;1859:431–5.

	4.	 Cutter AR, Hayes JJ. Linker histones: novel insights into structure-specific 
recognition of the nucleosome. Biochem Cell Biol. 2017;95:171–8.

	5.	 Kalashnikova AA, Rogge RA, Hansen JC. Linker histone H1 and protein-
protein interactions. Biochim Biophys Acta. 2016;1859:455–61.

	6.	 Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current 
perspectives and challenges. Nucleic Acids Res. 2013;41:9593–609.

	7.	 Hergeth SP, Schneider R. The H1 linker histones: multifunctional proteins 
beyond the nucleosomal core particle. EMBO Rep. 2015;16:1439–53.

	8.	 Fyodorov DV, Zhou BR, Skoultchi AI, Bai Y. Emerging roles of linker 
histones in regulating chromatin structure and function. Nat Rev Mol Cell 
Biol. 2018;19:192–206.

https://doi.org/10.1186/s13072-020-00345-9
https://doi.org/10.1186/s13072-020-00345-9


Page 16 of 16Teif et al. Epigenetics & Chromatin           (2020) 13:26 

	9.	 Olins DE, Olins AL. Nucleosomes: the structural quantum in chromo-
somes. Am Sci. 1978;66:704–11.

	10.	 Olins DE, Olins AL. Chromatin history: our view from the bridge. Nat Rev 
Mol Cell Biol. 2003;4:809–14.

	11.	 Gibbs EB, Kriwacki RW. Linker histones as liquid-like glue for chromatin. 
Proc Natl Acad Sci. 2018;115:11868–70.

	12.	 Olins DE, Olins AL. Epichromatin and chromomeres: a ‘fuzzy’ perspective. 
Open Biol. 2018;8:180058.

	13.	 Bates DL, Thomas JO. Histones H1 and H5: one or two molecules per 
nucleosome? Nucleic Acids Res. 1981;9:5883–94.

	14.	 Woodcock CL, Skoultchi AI, Fan Y. Role of linker histone in chromatin 
structure and function: H1 stoichiometry and nucleosome repeat length. 
Chromosome Res. 2006;14:17–25.

	15.	 Millan-Arino L, Izquierdo-Bouldstridge A, Jordan A. Specificities and 
genomic distribution of somatic mammalian histone H1 subtypes. 
Biochim Biophys Acta. 2016;1859:510–9.

	16.	 Izzo A, Schneider R. The role of linker histone H1 modifications in the 
regulation of gene expression and chromatin dynamics. Biochim Biophys 
Acta. 2016;1859:486–95.

	17.	 Happel N, Doenecke D. Histone H1 and its isoforms: contribution to 
chromatin structure and function. Gene. 2009;431:1–12.

	18.	 Flanagan TW, Brown DT. Molecular dynamics of histone H1. Biochim 
Biophys Acta. 2016;1859:468–75.

	19.	 Cao K, Lailler N, Zhang Y, Kumar A, Uppal K, Liu Z, Lee EK, Wu H, Medrzycki 
M, Pan C, et al. High-resolution mapping of h1 linker histone variants in 
embryonic stem cells. PLoS Genet. 2013;9:e1003417.

	20.	 Izzo A, Kamieniarz-Gdula K, Ramirez F, Noureen N, Kind J, Manke T, van 
Steensel B, Schneider R. The genomic landscape of the somatic linker 
histone subtypes H1.1 to H1.5 in human cells. Cell Rep. 2013;3:2142–54.

	21.	 Millan-Arino L, Islam AB, Izquierdo-Bouldstridge A, Mayor R, Terme JM, 
Luque N, Sancho M, Lopez-Bigas N, Jordan A. Mapping of six somatic 
linker histone H1 variants in human breast cancer cells uncovers specific 
features of H1.2. Nucleic Acids Res. 2014;42:4474–93.

	22.	 Li JY, Patterson M, Mikkola HK, Lowry WE, Kurdistani SK. Dynamic 
distribution of linker histone H1.5 in cellular differentiation. PLoS Genet. 
2012;8:e1002879.

	23.	 Olins AL, Ishaque N, Chotewutmontri S, Langowski J, Olins DE. Retro-
transposon Alu is enriched in the epichromatin of HL-60 cells. Nucleus. 
2014;5:237–46.

	24.	 Gould TJ, Toth K, Mucke N, Langowski J, Hakusui AS, Olins AL, Olins DE. 
Defining the epichromatin epitope. Nucleus. 2017;8:625–40.

	25.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9:357–9.

	26.	 Harmanci A, Rozowsky J, Gerstein M. MUSIC: identification of enriched 
regions in ChIP-Seq experiments using a mappability-corrected multi-
scale signal processing framework. Genome Biol. 2014;15:474.

	27.	 Vainshtein Y, Rippe K, Teif VB. NucTools: analysis of chromatin feature 
occupancy profiles from high-throughput sequencing data. BMC 
Genomics. 2017;18:158.

	28.	 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26:841–2.

	29.	 Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, 
Singh H, Glass CK. Simple combinations of lineage-determining transcrip-
tion factors prime cis-regulatory elements required for macrophage and 
B cell identities. Mol Cell. 2010;38:576–89.

	30.	 Antwi EB, Olins A, Teif VB, Bieg M, Bauer T, Gu Z, Brors B, Eils R, Olins D, 
Ishaque N. Whole-genome fingerprint of the DNA methylome during 
chemically induced differentiation of the human AML cell line HL-60/S4. 
Biology Open 2020;9:bio044222.

	31.	 Teif VB, Mallm J-P, Sharma T, Mark Welch DB, Rippe K, Eils R, Langowski J, 
Olins AL, Olins DE. Nucleosome repositioning during differentiation of a 
human myeloid leukemia cell line. Nucleus. 2017;8:188–204.

	32.	 Barbieri E, Trizzino M, Welsh SA, Owens TA, Calabretta B, Carroll M, Sarma 
K, Gardini A. Targeted enhancer activation by a subunit of the integrator 
complex. Mol Cell. 2018;71:103–116.

	33.	 Cheneby J, Gheorghe M, Artufel M, Mathelier A, Ballester B. ReMap 2018: 
an updated atlas of regulatory regions from an integrative analysis of 
DNA-binding ChIP-seq experiments. Nucleic Acids Res. 2018;46:D267–75.

	34.	 Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Shef-
field NC, Stergachis AB, Wang H, Vernot B, et al. The accessible chromatin 
landscape of the human genome. Nature. 2012;489:75–82.

	35.	 Kalashnikova AA, Porter-Goff ME, Muthurajan UM, Luger K, Hansen JC. 
The role of the nucleosome acidic patch in modulating higher order 
chromatin structure. J R Soc Interface. 2013;10:20121022.

	36.	 Zhou BR, Yadav KNS, Borgnia M, Hong J, Cao B, Olins AL, Olins DE, Bai Y, 
Zhang P. Atomic resolution cryo-EM structure of a native-like CENP-A 
nucleosome aided by an antibody fragment. Nat Commun. 2019;10:2301.

	37.	 Olins AL, Langhans M, Monestier M, Schlotterer A, Robinson DG, Viotti C, 
Zentgraf H, Zwerger M, Olins DE. An epichromatin epitope: persistence in 
the cell cycle and conservation in evolution. Nucleus. 2011;2:47–60.

	38.	 Teif VB, Beshnova DA, Vainshtein Y, Marth C, Mallm JP, Höfer T, Rippe 
K. Nucleosome repositioning links DNA (de)methylation and dif-
ferential CTCF binding during stem cell development. Genome Res. 
2014;24:1285–95.

	39.	 Teif VB, Vainshtein Y, Caudron-Herger M, Mallm JP, Marth C, Höfer T, Rippe 
K. Genome-wide nucleosome positioning during embryonic stem cell 
development. Nat Struct Mol Biol. 2012;19:1185–92.

	40.	 Fu Y, Sinha M, Peterson CL, Weng Z. The insulator binding protein CTCF 
positions 20 nucleosomes around its binding sites across the human 
genome. PLoS Genet. 2008;4:e1000138.

	41.	 Minderjahn J, Schmidt A, Fuchs A, Schill R, Raithel J, Babina M, Schmidl C, 
Gebhard C, Schmidhofer S, Mendes K, et al. Mechanisms governing the 
pioneering and redistribution capabilities of the non-classical pioneer 
PU1. Nat Commun. 2020;11:402.

	42.	 Clarkson CT, Deeks EA, Samarista R, Mamayusupova H, Zhurkin VB, Teif 
VB. CTCF-dependent chromatin boundaries formed by asymmetric 
nucleosome arrays with decreased linker length. Nucleic Acids Res. 
2019;47:11181–96.

	43.	 Beshnova DA, Cherstvy AG, Vainshtein Y, Teif VB. Regulation of the nucleo-
some repeat length in vivo by the DNA sequence, protein concentrations 
and long-range interactions. PLoS Comput Biol. 2014;10:e1003698.

	44.	 Wiehle L, Thorn GJ, Raddatz G, Clarkson CT, Rippe K, Lyko F, Breiling A, Teif 
VB. DNA (de)methylation in embryonic stem cells controls CTCF-depend-
ent chromatin boundaries. Genome Res. 2019;29:750–61.

	45.	 Ricci MA, Manzo C, Garcia-Parajo MF, Lakadamyali M, Cosma MP. Chroma-
tin fibers are formed by heterogeneous groups of nucleosomes in vivo. 
Cell. 2015;160:1145–58.

	46.	 Finn EH, Misteli T. Molecular basis and biological function of variability in 
spatial genome organization. Science. 2019;365:eaaw9498.

	47.	 Hu J, Gu L, Ye Y, Zheng M, Xu Z, Lin J, Du Y, Tian M, Luo L, Wang B, et al. 
Dynamic placement of the linker histone H1 associated with nucleo-
some arrangement and gene transcription in early Drosophila embryonic 
development. Cell Death Dis. 2018;9:765.

	48.	 Nagashima R, Hibino K, Ashwin SS, Babokhov M, Fujishiro S, Imai R, Nozaki 
T, Tamura S, Tani T, Kimura H, et al. Single nucleosome imaging reveals 
loose genome chromatin networks via active RNA polymerase II. J Cell 
Biol. 2019;218:1511–30.

	49.	 Glaich O, Leader Y, Lev Maor G, Ast G. Histone H1.5 binds over splice 
sites in chromatin and regulates alternative splicing. Nucleic Acids Res. 
2019;47:6145–59.

	50.	 Cherstvy AG, Teif VB. Electrostatic effect of H1-histone protein binding on 
nucleosome repeat length. Phys Biol. 2014;11:044001.

	51.	 Choi J, Lyons DB, Kim Y, Moore JD, Zilberman D. DNA methylation and 
histone H1 cooperatively repress transposable elements and aberrant 
intragenic transcripts. Mol Cell 2020;77:310–323.e7.

	52.	 Rutowicz K, Lirski M, Mermaz B, Teano G, Schubert J, Mestiri I, Kroten MA, 
Fabrice TN, Fritz S, Grob S, et al. Linker histones are fine-scale chromatin 
architects modulating developmental decisions in Arabidopsis. Genome 
Biol. 2019;20:157.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Linker histone epitopes are hidden by in situ higher-order chromatin structure
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Introduction
	Materials and methods
	Cell culture and antibodies
	Immunostaining and STED imaging
	ChIP-seq
	ChIP-seq analysis
	External datasets

	Results
	Immunostaining of interphase nuclei with anti-H1.2 and H1.5 demonstrates punctate structures
	Chromatin immunoprecipitation (IP) with anti-H1 demonstrates differences in genomic element enrichmentdepletion
	Differential enrichments of H1 variants around protein-binding sites
	“Open” chromatin regions have narrow xChIP and wide xxChIP depletion
	Influence of H1.2H1.5 enrichment on the nucleosome repeat length (NRL)
	Interplay between linker histones and DNA methylation

	Discussion
	Acknowledgements
	References




