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Abstract 

Background:  Next-generation sequencing allows genome-wide analysis of changes in chromatin states and gene 
expression. Data analysis of these increasingly used methods either requires multiple analysis steps, or extensive 
computational time. We sought to develop a tool for rapid quantification of sequencing peaks from diverse experi‑
mental sources and an efficient method to produce coverage tracks for accurate visualization that can be intuitively 
displayed and interpreted by experimentalists with minimal bioinformatics background. We demonstrate its strength 
and usability by integrating data from several types of sequencing approaches.

Results:  We have developed BAMscale, a one-step tool that processes a wide set of sequencing datasets. To demon‑
strate the usefulness of BAMscale, we analyzed multiple sequencing datasets from chromatin immunoprecipitation 
sequencing data (ChIP-seq), chromatin state change data (assay for transposase-accessible chromatin using sequenc‑
ing: ATAC-seq, DNA double-strand break mapping sequencing: END-seq), DNA replication data (Okazaki fragments 
sequencing: OK-seq, nascent-strand sequencing: NS-seq, single-cell replication timing sequencing: scRepli-seq) and 
RNA-seq data. The outputs consist of raw and normalized peak scores (multiple normalizations) in text format and 
scaled bigWig coverage tracks that are directly accessible to data visualization programs. BAMScale also includes a 
visualization module facilitating direct, on-demand quantitative peak comparisons that can be used by experimental‑
ists. Our tool can effectively analyze large sequencing datasets (~ 100 Gb size) in minutes, outperforming currently 
available tools.

Conclusions:  BAMscale accurately quantifies and normalizes identified peaks directly from BAM files, and creates 
coverage tracks for visualization in genome browsers. BAMScale can be implemented for a wide set of methods for 
calculating coverage tracks, including ChIP-seq and ATAC-seq, as well as methods that currently require specialized, 
separate tools for analyses, such as splice-aware RNA-seq, END-seq and OK-seq for which no dedicated software is 
available. BAMscale is freely available on github (https​://githu​b.com/ncbi/BAMsc​ale).
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Background
Improved technologies and decreasing sequencing 
costs enable in-depth analyses of chromatin and gene 
expression changes for genome-wide comparisons. 
These integrative multi-omics studies elucidate the 
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functionalities of coding and non-coding parts of the 
genome, their influence on development of complex 
disease such as cancers [1–4] and their translational 
implications [5–7].

Currently many studies focus on identifying protein–
DNA interactions through sequencing (ChIP-seq) [8, 
9]. By mapping protein-bound DNA, we can determine 
transcription factor binding sites or histone modification 
distributions across the genome. Other analyses focus on 
identifying open-chromatin and DNA-accessible regions 
[10–13], which are useful to classify enhancer regions, 
and transcription factor footprints [14–16]. Integrating 
these analyses with gene expression data such as RNA-
seq [17–19], it is possible to gain better understanding of 
the architecture and regulation of the genome.

Recently, a new method has been introduced for 
genome-wide mapping of DNA double-strand breaks 
(END-seq) [20]. By enabling detection of DNA breaks 
that occur in a small fraction of a cell population, END-
seq can be used to understand how breaks occur and are 
repaired.

To understand DNA replication patterns across the 
genome, next-generation sequencing methods are 
increasingly used. They are either based on sequencing 
newly synthesized and RNA-primed DNA, such as Oka-
zaki fragment sequencing (OK-seq) [21] for the lagging 
strand or nascent-strand sequencing (NS-seq) for the 
leading strand [22]. These approaches are useful to pin-
point where DNA replication is initiated in the genome. 
The order of genome replication can also be measured 
with replication-timing sequencing, which involves iden-
tifying copy-number state differences between diploid 
G1-phase and replicating S-phase (or asynchronous—
AS) cells [23–26].

Although sequencing methods are routinely used, data 
analyses need constant improvement to reduce the num-
ber of steps prone to error. In many cases, results are dif-
ficult to accurately reproduce because they are obtained 
with “in-house” scripts. One such example is the quan-
tification of ChIP-seq/ATAC-seq peaks followed by 
normalization. Another example is generating sequenc-
ing coverage tracks [27–29], which requires either more 
computation time for scaling and/or multiple steps to get 
accurate results. Additionally, many sequencing types do 
not have dedicated solutions for creating coverage tracks 
for accurate visualization. One example is OK-seq, where 
replication fork directionality (RFD) is used to identify 
replication origins in the genome. RFD is calculated from 
the ratio of reads aligning on the forward and reverse 
strand, which is usually accomplished by calculations 
involving multiple steps. Another example is splice-aware 
RNA-seq, for which the coverage tracks can be calcu-
lated using multiple tools, but many of them disregard 

exon–intron boundaries are disregarded, yielding inaccu-
rate representations of splicing events.

Here, we introduce BAMscale (summarized in Fig.  1 
and Table 1), a new genomic software tool for generating 
normalized peak coverages and scaled sequencing cover-
age tracks in bigWig format. BAMscale is a one-step tool 
that processes DNA sequencing datasets to create scaled 
and normalized quantifications and coverage tracks. As 
summarized in Table 1, BAMscale can process sequenc-
ing data generated by diverse experimental approaches, 
including chromatin binding (ChIP-seq), chromatin 
accessibility (ATAC-seq), stranded and unstranded 
RNA-seq, DNA replication assays (OK-seq, NS-seq 
and replication timing) and DNA double-strand breaks 
sequencing (END-seq). We developed BAMscale in 
C-programming language using the samtools library [30] 
and libBigWig [27], achieving superior performance com-
pared to existing tools. BAMscale can process 100  GB 
of aligned data (in BAM format) in under 20 min using 
a regular computer with 4 processing threads. To dem-
onstrate the potential of BAMscale, we processed a wide 
set of sequencing datasets (Additional file  1: Table  S1), 
benchmarking the performance with existing tools, 
paired with post-analyses. The tool, with installation and 
extensive usage examples, is available at https​://githu​
b.com/ncbi/BAMsc​ale.

Results
Some of the most basic functions of BAMscale are the 
capability to quantify detected peaks and the ability to 
scale the sequencing coverage for visualization. BAM-
Scale modules are available for processing data from 
BAM files generated by standard chromatin analyses such 
as ChIP-seq and ATAC-seq experiments and contains 
additional custom functions to process sequencing data 
from RNA-seq (rna, stranded or unstranded—Fig.  1b), 
OK-seq (rfd, Fig.  1c), replication timing analyses (rep-
time, Fig.  1d) and DNA break mapping (endseq(r), 
Fig.  1e). These modules allow direct quantification of 
peaks from various experimental sources, which are 
often tested for colocalization in chromatin analyses, 
using a single, uniform tool.

Peak quantification and scaling coverage track 
from ATAC‑seq data
To test the capabilities of BAMScale, we first imple-
mented it to compare chromatin accessibility from 
ATAC-seq data in SLFN11-proficient and deficient cells 
[31]. While the performance of BAMscale for peak quan-
tification was comparable to the most commonly used 
BEDTools [2] program with a single processing thread 
(Additional file  2: Fig. S1A), BAMscale reduced execu-
tion time by ~ 50% when using four threads (Fig.  2a). 

https://github.com/ncbi/BAMscale
https://github.com/ncbi/BAMscale
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Minor reductions of execution time were observed using 
8 threads (Additional file 2: Fig. S1A). Notably, BEDTools 
only calculates raw read counts, whereas BAMscale per-
forms normalization of raw read counts while outputting 
FPKM, TPM and library size normalized peak scores. 
This enables a direct comparison of peaks between sam-
ples from cells with different genomic backgrounds 
undergoing diverse treatments. As shown in Fig.  2b 
and Additional file  2: Fig. S1B (each point represents 

one peak), correlations of raw read counts from the two 
methods were above 0.99 (Fig.  2b and Additional file  2: 
Fig.S1B), resulting in high density of points on the diag-
onal that give the appearance of a straight line. Out of 
the 32,819 quantified peaks, only a single ATAC-seq 
peak had low read counts from BAMscale and high read 
counts from BEDTools. That peak was covered predomi-
nantly by reads where the read-pair mapped to a differ-
ent chromosome (Additional file  2: Fig. S1C) that were 
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removed by default by BAMscale. The mean execution 
time to create sequencing coverage tracks with BAM-
scale was 4.6-fold faster than deepTools bamCoverage and 
1.8-fold faster than IGVtools (which does not scale for 
library size). We have also attempted to compare execu-
tion times for this task with the MACS2 program, which 
is able to create bedgraph formatted coverage tracks that 
need to be converted to bigwig format (Table  1). The 
pileup function of MACS2 achieved similar run-times as 
BAMscale, but did not scale the coverage, whereas the 
callpeak function scaled coverages with slower run-times 
(3.1 × slower) due to concomitant peak calling (Fig. 2c).

We next compared the effect of the topoisomerase I 
(TOP1) inhibitor camptothecin (CPT) on ATAC-seq pat-
terns in human leukemia CCRF-CEM (SLFN11-positive) 
cells and their isogenic SFLN11-knockout [31]. After CPT 
treatment, chromatin accessibility remained unchanged 
in the SLFN11-KO cells, while accessibility of pre-exist-
ing sites strongly increased in the SLFN11-positive cells 
(Fig.  2d). Using the GIGGLE tool [32] on the Cistrome 
[33] website, we found that ATAC-seq peaks strongly 
overlapped with H3K27ac, H3K4me3 and H3K9ac sites, 
which are histone marks associated with active genes 
(Fig. 2e). Colocalization analysis of sites with > threefold 
increase during CPT treatment in SLFN11-positive cells 
showed ~ 20% increase in overlap with H3K4me3 and 
H3K9ac sites, identified using Coloweb [34] (Additional 
file 1: Table S2, Additional file 2: Fig. S2). DNA accessibil-
ity sites were strongly enriched in gene promoter regions, 
such as in the TOP1 and CTCF gene promoters (Fig. 2f ).

BAMscale is designed to quantify ChIP-seq/ATAC-
seq peaks from BAM and BED files, producing raw 
read counts, as well as TPM, FPKM and library size 

normalized peak scores (Fig.  1a). By providing accurate 
peak quantification in parallel with generated scaled 
coverage tracks, BAMscale simplifies the comparison 
and visualization of genome-wide and local changes. To 
illustrate this point, we reanalyzed published histone 
ChIP-seq data from MV4-11 cell line and their isogenic 
counterpart (MV4-11R) resistant to PKC412, a multi-
target protein kinase inhibitor [35]. Using the BAMscale 
“cov” and “scale” functions, we accurately quantified peak 
strengths, and created scaled coverage tracks ready for 
visualization. In agreement with published results, we 
observed a global increase of H3K27ac, a decrease in 
H3K27me3 and a largely unchanged H3K4me3 signal 
in the drug-resistant cells (Fig. 1a, Additional file 2: Fig. 
S3A-C). Drug-resistant cells displayed elevated protein 
expression of HOXB7 [35], which has increased histone 
H3K27ac signal, a known marker for active genes.

RNA‑seq data coverage track generation
RNA-seq involves sequencing of mature RNA, where 
introns are spliced-out of the molecules. For this reason, 
genome alignment of RNA-seq is performed with splice-
aware aligners such as STAR [36] or HISAT2 [37]. These 
tools are able to split sequencing reads between two (or 
more) exons with or without prior gene annotations. 
Currently most tools that generate coverage tracks (in 
bigWig or tdf format) are capable of identifying splicing 
events in the alignments, but their binning process cre-
ates inaccurate representations. This causes strong cov-
erage drops in bins that overlap exon–intron boundaries. 
For this reason, we implemented an RNA-seq-compati-
ble function for BAMscale (Fig.  1b). Compared to the 
standard run, in RNA-seq mode BAMscale searches for 

Table 1  Capabilities of BAMScale and other publicly available tools

* Scaling factor cannot be specified

** BAM file has to be pre-filtered for alignment quality

Tool

BAMscale IGVtools bedtools MACS (callpeak followed by 
bedgraph2bigwig (UCSC)**

MACS (pileup followed by 
bedgraph2bigwig (UCSC)**

deeptools

Creating coverage tracks

 ChIP-seq/ATAC-seq X X X * X

 ChIP-seq/ATAC-seq (normalized) X X X

 Log2 coverage (replication timing) X X

 OK-seq (RFD calculation) X

 RNA-seq X * * * X

 RNA-seq (splice-aware) X

 Stranded coverage X X

Quantifying peaks

 Raw read counts x x

 Normalized read counts x
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sudden changes in coverages between adjacent bases 
in a bin (usually >=5 reads), where resolution changes 
from bin to a single base pair (illustrated in Fig.  3a). A 
major advantage of this method is that no gene/tran-
script annotation is needed for accurate representation 

of recurrent splicing events. Output coverages can be set 
to be unstranded (“rna” operation) or stranded (opera-
tion set to “stranded” or “stranded”), where two separate 
bigWig files are created for the two strands (Additional 
file 2: Fig. S4).
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To test the potential of BAMscale RNA-seq mode, we 
reprocessed previously published RNA-seq data from 
Top1mt wild type and knock-out mice [38]. BAMscale 
is capable of producing more accurate, single-base res-
olution tracks at exon–intron boundaries, compared 
to IGVTools or deepTools bamCoverage (Fig. 3b). Addi-
tionally, the RNA-seq compatible BAMscale (using one 
processing thread) is 2.5-fold faster than IGVTools, 7.2-
fold and 3.9-fold faster than deepTools bamCoverage 
running on one or four threads, respectively (Fig.  3c). 
After differential expression analysis, we identified 
several genes that are upregulated in the KO samples 
(Additional file 1: Table S3), such as Insig2, which was 
the statistically most significantly, but with a mod-
erate fold-change increase around 2x (Fig.  3d). This 
subtle change in expression is somewhat visible in the 
unscaled tracks, but the variation in the signal is very 
strong across replicates (Fig. 3e, upper tracks). This can 
be overcome by either extracting scaling factors for 
samples from the differential expression analysis pro-
gram such as DESeq 2 (Fig. 3e, lower tracks), or by using 
the genome-size scaling, which scales to the number of 
sequenced bases. These methods ensure more compa-
rable results for visualization by reducing the variations 
due to sequencing library size differences.

Alignment of DNA‑breakage sites and replication origins 
with replication timing domains
BAMScale expands the range of data type that can be 
quantitatively scaled and analyzed to include OK-seq, 
replication timing and splice-aware RNA-seq analyses 
in addition to ChIP-seq/ATAC-seq, which can be ana-
lyzed by other tools as well (see Table 1 for a detailed 
comparison of data types and analysis tools). To test 
these capabilities, we processed replication timing, OK-
seq and END-seq data derived from activated mouse B 
cells [39], where the coverage tracks for the three data-
sets were created with BAMscale.

Replication timing sequencing calculates the order 
of genome replication. This usually involves the com-
parison of sequencing depths between G1-phase and 
S-phase cells. Replication timing log2 coverages of two 
BAM files can be calculated with BAMscale by setting 
the “reptime” flag as the operation. In this process, 
BAMscale first calculates the bin-level coverage of the 
genome for both BAM files, followed by separate signal 
smoothening. By default, the bin size is set to 100  bp, 
while the smoothening is set to 500 bins. After smooth-
ening the coverage of the two input files, the log2 cov-
erage is calculated and exported to a bigWig file for 
visualization.
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For OK-seq, the replication fork directionality (RFD) 
can be calculated with BAMscale, for which no other 
dedicated tools are currently available. When BAM-
scale is set with the “rfd” operation, it calculates the 
bin-level coverage of the genome for reads aligning to 
the forward strand, and reverse strand separately, fol-
lowed by RFD calculation of each bin [21]. In case of 
mapping of DNA breaks with END-seq, stranded bin-
level coverages can be calculated by setting the opera-
tion flag to “endseq” (both strands have positive values) 
or “endseqr” (negative strand coverage will be negative) 
which allows to overlay the two strand coverages in one 
figure.

Visual comparison showed high similarly with the 
deposited tracks (Additional file  2: Fig. S5). As previ-
ously reported, END-seq DNA-break signals were pre-
dominantly observed in early replicating regions of the 
genome (Fig.  4a). Genome regions with stronger END-
seq signal displayed a higher replication timing average 
calculated from the log2 tracks compared to randomly 
selected regions (Fig. 4b). Comparison of negative to pos-
itive strand switching in the replication initiation zones 
identified by OK-seq showed strong overlaps among 
regions with increased END-seq signal (Fig. 4c).

Finally, we compared replication timing data to OK-
seq and NS-seq (Nascent strand sequencing) data from 
the human leukemia K562 cell line. Replication timing 
results (Fig. 5a(i)) and the generated segments (Fig. 5a(ii)) 
showed that early-replicating regions strongly corre-
late with active chromatin regions (Fig.  5a(iii)) identi-
fied with ChromHMM [40, 41]. Furthermore, BAMscale 
also showed a strong overlap of OK-seq [42]. RFD strand 
switches (associated with synchronized replication initia-
tion zones) with active euchromatin (Fig. 5a(iv, v)). Fewer 
than 0.5% of identified OK-seq strand switches were iden-
tified in heterochromatin, where no overlap with active 
chromatin regions was found. Similarly, we observed 
higher NS-seq signal (and replication origin peaks) in 
euchromatin (Fig. 5a(vi). Early-replicating regions tend to 
be associated with more replication initiation sites, which 
gradually decrease in later phases of replication timing 
(Fig. 5b). These results correlate strongly with the NS-seq 
results showing that early replicating regions have higher 
peak densities compared to late-replicating regions [43] 
(Fig. 5b). We also tested BAMscale on 80 single-cell repli-
cation timing sequencing (scRepli-seq) samples [44]. We 
were able to accurately reproduce the single-cell log2 rep-
lication timing profiles from G1 phase and mid-S phase 
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cells (Additional file 2: Fig. S6), requiring on average 11 s 
of processing time for each sample pair using 4 process-
ing threads. Furthermore, we compared the performance 
of BAMscale and deepTools bamCompare on the replica-
tion timing data derived from the human leukemia K562 
cell line using eight processing threads. The sequencing 
data consists of > 103 Gb of sequencing data in BAM for-
mat, which we re-analyzed six times. The mean run time 
of BAMscale was 23.2 min, which is a 5.3-fold decrease 
in analysis time, compared to 123.1  min required for 
deepTools.

Discussion
Widespread usage of DNA and RNA capture-based 
methods helps us understand and categorize changes in 
chromatin state and their regulatory effects on DNA rep-
lication and gene expression. Visualization of genome-
wide data is a crucial step to identify complex genomic 
patterns and relationships. Because of the increased 
usage of next-generation sequencing both in basic 
research and clinical settings, it is important to analyze 
data reproducibly by removing as many analysis steps as 

possible, as they may be prone to error and be limiting 
for experimentalists.

BAMscale addresses two critical prevalent issues that 
are often encountered in sequencing-based chroma-
tin analyses. First, since the scope of next-generation 
sequencing is usually genome-wide, the signal distribu-
tion of these techniques is generally visualized with dif-
ferent genomic viewers [29, 45]. However, available tools 
for sequencing track generation either require multiple 
steps or need long computation time to produce results 
ready for visualization [27–29]. Additionally, quantifica-
tion and normalization of ChIP-seq and ATAC-seq peak 
strengths require multiple analysis steps using time-con-
suming, case-by-case programming of “in-house” scripts, 
i.e., time-consuming case-by-case programming. Second, 
although there are multiple tools to analyze genome-level 
coverage of sequencing data (e.g., IGVTools [29], deep-
Tools [27], and MACS2 [46] coverage mode coverage 
mode and align2rawsignal [https​://code.googl​e.com/p/
align​2raws​ignal​/]; Table 1), many sequencing approaches 
require specific analysis methods for accurate representa-
tions. A simple example is RNA-seq, where the binning 
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process has to be splice-aware for accurate representa-
tion of exon–intron boundaries. These are currently 
not supported by the above-mentioned tools. Another 
example is OK-seq, which can be used to identify replica-
tion origins based on the calculation of replication fork 
directionality (RFD), for which no dedicated software is 
available. BAMscale provides a uniform, single-step scal-
ing function for these diverse data types, including easy-
to-use custom scripts that facilitate quantification and 
analyses. The additional post-analysis and visualization 
scripts of BAMscale allow experimentalists to compare, 
quantify and analyze data from a variety of experimen-
tal approaches, aiding in the integration of epigenetic 
studies.

We developed BAMscale to analyze data in a quick, 
simple and reproducible manner. It is developed in basic 
C-programming, resulting in very fast execution times 
compared to previous methods. To facilitate data analy-
sis, we implemented multiple pre-defined settings for a 
wide set of sequencing types accompanied with extensive 
tutorials (https​://githu​b.com/ncbi/BAMsc​ale wiki page).

Using BAMscale as a peak quantification method and 
a scaled coverage-track generation tool, users can iden-
tify single focal changes in the genome as well as under-
stand how certain conditions alter global chromatin. We 
have also implemented an RNA-seq-compatible version 
enabling accurate visualization of exon–intron bounda-
ries from both stranded and un-stranded data. Notably, 
BAMscale eliminates the need to perform and convert 
outputs from multiple analyses tools to quantify and visu-
alize data measuring chromatin modifications (ChIP-seq/
ATAC-seq), transcription (splice-aware RNA-seq), DNA 
breakage (END-Seq) and replication (OK-seq, replication 
timing, NS-Seq). This capability facilitates the analyses of 
the effects of perturbation on those concomitant chro-
matin transactions and provides a methodological basis 
to address important issues such as the coordination of 
DNA replication and transcription or the orchestration 
of DNA damage repair with histone modifications. Inte-
gration of these multiple analyses would also enable the 
stratification and identification of genomic regions of 
interest displaying alterations in one or multiple epige-
netic properties.

Conclusions
BAMscale is a tool that can be used to accurately quan-
tify and normalize identified peaks directly from BAM 
files, as well as create coverage tracks for visualiza-
tion in genome browsers. The uniform scaling func-
tion and the peak-size comparison visualization tool 
allow easy interpretation of data from various sequenc-
ing approaches by experimentalists, and the availabil-
ity of custom scripts facilitate the integration of distinct 

chromatin interactions interrogated with diverse meth-
odologies. Due to the multithreaded implementation, 
our tool outperforms currently used methods. We imple-
mented sequencing-specific coverage track calculation 
modes including: (1) replication timing, (2) replication 
fork directionality analysis from OK-seq data, (3) strand-
specific coverage of DNA breaks from END-seq and (4) 
splice-aware RNA-seq coverage modes, many of which 
lack any dedicated software. BAMscale is freely available 
on github (https​://githu​b.com/ncbi/BAMsc​ale).

Methods
BAMscale algorithm
Peak quantification
Peaks can be quantified with BAMscale’s cov function, 
which takes as input a BED file with peak coordinates, 
and one or multiple BAM files, outputting raw read 
counts, FPKM, TPM and library size normalized peak 
scores. Paired-end reads can be quantified in two main 
ways: (1) using each read as a single entity, or (2) count-
ing read pairs as one fragment. Additionally, it is possible 
to count reads that follow either the strand direction of 
each peak in the BED file, or simply calculate forward or 
reverse reads only.

During peak quantification, BAMscale by default 
first reads the entire BAM file(s) to count the number 
of aligned reads using the selected alignment filters to 
get the effective library size. This approach gives more 
accurate alignment statistics than using the BAM index 
file, which has information on number of aligned reads 
only, containing duplicate reads and low-quality reads 
as well. After calculating the effective library size, BAM-
scale counts the number of overlapping reads with each 
coordinate in the BAM file, followed by FPKM [47], 
TPM [48] and library size (scaled to the smallest library) 
normalization.

To facilitate pairwise comparisons (as seen in Fig. 2d), 
we prepared an interactive R script (available at https​://
githu​b.com/ncbi/BAMsc​ale) using the shiny, ggplot2, 
tidyr, ggrepel and gridExtra libraries to plot density dot-
plots of the quantified (TPM, FPKM and library size nor-
malized) peaks outputted from BAMscale.

Creating coverage tracks from sequencing data
To generate normalized coverage tracks, the BAMscale 
“scale” function first imports the coverage of every bin 
(changeable) of the genome, followed by either genome 
size scaling (based on the length of the genome), or read 
count scaling. During genome size scaling, the scal-
ing factor is calculated by dividing the total number of 
aligned bases with the genome size, which is obtained 
from the header of the BAM file. In cases where the num-
ber of bases exceeds the genome size, scaling will reduce 

https://github.com/ncbi/BAMscale
https://github.com/ncbi/BAMscale
https://github.com/ncbi/BAMscale
https://github.com/ncbi/BAMscale
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the per-bin coverage, while increasing the coverage when 
the sequenced bases are less than the genome size. The 
advantage of this approach is that each sample can be 
scaled separately. Alternatively, it is possible to scale mul-
tiple samples based on the library size. In these cases, the 
number of aligned reads is calculated for each sample, 
and scaling is done by scaling each sample to the smallest 
in the set. A drawback of this approach is that all samples 
have to be processed in parallel, which increases memory 
requirements (~ 500  Mb for each sample when the bin 
size is set to 5 bp). Additionally, it is possible to supply a 
scaling factor for each sample that will be used to adjust 
the coverages.

We implemented an RNA-seq-compatible option for 
creating coverage tracks with a difference in binning 
strategy. In RNA-seq mode, at cases where two adjacent 
bases in one bin have a coverage difference above 4 reads, 
the resolution is automatically changed to single base 
resolution. This enables the accurate representation of 
exon–intron boundaries.

Additionally, we implemented a signal smoothing 
option for coverage tracks. When smoothening a signal, 
the number of adjacent bins can be specified, which will 
be used to calculate the final signal of each bin.

In cases where two files are specified, different opera-
tions can be performed, such as calculating the log2 ratio 
of bins, or subtracting the values of bins.

For ease of use, we implemented predetermined set-
tings to analyze replication timing data and END-seq 
data. In case of the “reptime” operation, the log2 cover-
age of two bam files are calculated for 100 bp bin sizes, 
with signal smoothening set to 500 bins. In case of END-
seq, we can set the operation to “endseq”, which creates 
stranded coverage tracks, or “endseqr”, which negates 
the coverage track of the negative strand for ease of 
visualization.

OK‑seq data and replication fork directionality
In case of OK-seq data first the Watson (forward) and 
Crick (reverse) strand coverages are calculated consecu-
tively. After importing the strand-specific coverages, the 
replication fork directionality (RFD) is calculated as:

where XCrick,i denotes the Crick read counts, XWatson,i 
denotes the Watson read counts for the i-th bin (based 
on [21]).

Sequenced data
NS‑seq and replication timing sequencing of K562 cell lines
To produce high coverage sequencing of replication ori-
gins for the K562 human bone marrow derived cell line, 

RFDi =
XCrick,i − XWatson,i

XCrick,i + XWatson,i

,

we performed nascent-strand sequencing and replication 
timing sequencing available at GEO (GSE131417).

K562 NS‑seq sample preparation
Replication origins were mapped using the nascent-
strand sequencing and abundance assay [22]. Briefly, 
DNA fractionation was performed using a 5-30% sucrose 
gradient to collect DNA fractions ranging from 0.5 to 
2 kb. Five prime single-strand DNA ends were phos-
phorylated by T4 polynucleotide kinase (T4PK) (NEB, 
M0201S). After phenol/chloroform treatment to remove 
T4 PK, DNA was precipitated, resuspended and then 
treated with lambda-exonuclease (NEB, M0262S) to 
remove genomic DNA fragments that lacked the phos-
phorylated RNA primer. After RNase treatment and 
DNA purification (Qiagen PCR purification kit, 28004), 
single-stranded nascent strands were random-primed 
using the Klenow and DNA Prime Labeling System (Inv-
itrogen, 18187013). Double-stranded nascent DNA (1 μg) 
was sequenced using the Genome Analyzer II (Illumina).

K562 replication timing sample preparation
To get the pure G1 phase cells, 1 × 108 K562 cells were 
washed twice with cold PBS and fractionated by elutria-
tion at each of the following flow speeds: 15 × 2, 16 × 2, 
17 × 2, 18 × 2 19 × 2, 20 × 2  ml/min. Each fraction 
was stained by DAPI in PBS and confirmed by FACS. 
Genomic DNA from G1 phase and asynchronized K562 
cells was extracted simultaneously according to manufac-
turer’s instructions (Qiagen, 69506).

Data analysis
We demonstrate the capabilities of BAMscale on a wide 
set of sequencing datasets, such as ATAC-seq [31], ChIP-
seq [35], replication timing data and END-seq [39], OK-
seq [39, 42], single-cell Repli-seq and BrdU-IP [44] and 
stranded RNA-seq [38]. The complete list of analyzed 
samples, genome version and tissues of origins used in 
this study are shown in Additional file 1: Table S1.

Alignment of sequencing data
The next-generation sequencing data GEO/ENA and 
SRA ids, along with sample type, aligner (and version) 
and genome build summarizing 27 processed sequencing 
experiments can be found in Additional file 1: Table S1. 
ATAC-seq, ChIP-seq, OK-seq, END-seq and NS-seq 
were aligned with the bwa mem aligner [49] (version 
0.7.17) or dragen pipeline [50] in case of the K562 replica-
tion timing. RNA-seq data were aligned using the STAR​ 
aligner [36] two-pass mode. Alignment settings were 
based on “best recall at base and read level” as shown 
in supplementary Table  37 of [51] to obtain the best 
alignments. Aligned (unsorted) reads were sorted using 
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samtools [30] (version 1.8), followed by duplicate mark-
ing using picard-tools (version 2.9.2).

Peak calling and coverage track generation for ATAC‑seq, 
ChIP‑seq and NS‑seq
Peaks were identified using MACS [46] peak caller (ver-
sion 2.1.1.20160309), using the nomodel setting for 
ATAC-seq and NS-seq, and FDR set to 0.01 to filter low-
quality peaks. ATAC-seq peaks were called using the 
narrow setting, while histone peaks were called using 
the broad peak setting of MACS. In case of NS-seq data, 
both broad and narrow peaks were called, the top 10% 
of narrow peaks were intersected with the broad peaks 
to retrieve the highest scoring regions. Called peaks for 
each cell line and condition were sorted and merged 
using BEDTools [28] (version 2.27.1). Peak quantification 
was performed with the “cov” function of BAMscale sep-
arately for each sequencing type.

Gene expression quantification and differential expression 
analysis from RNA‑seq data
Raw read counts for each gene were calculated using the 
TPMcalculator program [52]. Differential expression 
analysis between wild-type and KO samples were cal-
culated using DESeq  2 [53], where, as suggested in the 
manual, genes with less than ten reads on average were 
removed from the analysis. Scaling factors for each sam-
ple were obtained using DESeq  2 sizeFactors() function. 
Scaled coverages were created with BAMscale “scale” 
function with operation set to “strandrnaR” and bin size 
set to 15 bases, scaling set to “-k custom” and scaling fac-
tor set to the reciprocal estimated factors from DESeq 2 
for each sample.

OK‑seq data
BigWig signal of aligned OK-seq reads were created with 
the BAMscale “scale” function, with the operation set to 
“rfd” (replication fork directionality), all other parameters 
were set to default.

END‑seq data
The strand-specific coverage tracks for END-seq data 
were created the BAMscale “scale” function, with the 
operation set to “endseqr”. Two coverage tracks are cre-
ated, one with the forward strand, and a separate track 
for negative strand reads, where the score is negated.

Replication timing data
Replication timing log2 ratio coverage tracks were cre-
ated with the BAMscale “scale” function, with the 
operation set to “reptime”. The first specified BAM file 
is the G1-phase-specific sequencing data, the second 
BAM file was the asynchronous cell-cycle BAM file. 

Replication-timing segments were identified the “Repli-
cation_timing_segmenter.R” script developed in R, and 
deposited on github along the BAMscale code.

Single‑cell (sc) Repli‑seq
Replication timing log2 ratio coverage tracks for single-
cell replication timing data [44] were created with the 
BAMscale “scale” function. The operation parameter was 
set to log2, and to reproduce the original analysis results, 
we set the bin size was set to 50 kb, and signal smoothen-
ing to 4 (resulting in 400 kb smoothening). In case of the 
standard CBA/MsM samples the “CBMS1_ESC_single_
G1_01” (GSM2904978) sample was used as the G1 phase 
reference, and sample “CBMS1_Day7Diff_ESC_single_
G1_01” (GSM2905031) was used as the G1 phase refer-
ence for the 7-day differentiated CBA/MsM samples.

BrdU‑IP replication timing data
The log2 coverage of early and late S-phase BrdU-IP 
sequencing was calculated using the BAMscale “scale” 
function. Similarly to the scRepli-seq data, the operation 
parameter was set to log2, and to reproduce the original 
analysis results, we set the bin size to 50  kb, and signal 
smoothening to 4 (resulting in 400 kb smoothening).
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Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1307​2-020-00343​-x.

Additional file 1: Table S1. Detailed list of processed samples. Table S2. 
Colocalization statistics of ATAC-seq peaks with > 3x opening and < 3x 
opening induced by camptothecin (CPT) treatment in human leukemia 
CCRF-CEM SLFN11 wild type and KO. Table S3. Differential expression 
analysis results between Top1mt wild type and knockout murine liver 
tumor samples. 
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tools using ATAC-seq data. A) Peak quantification performance using 
bedtools and BAMscale (1, 4 and 8 execution threads). B) Comparison of 
raw read counts between bedtools and BAMscale in six ATAC-seq samples. 
C) IGV screenshot of a peak overestimated by bedtools in all samples, 
where read pairs align to different chromosomes. Fig. S2. Colocaliza‑
tion of ATAC-seq peaks. Peaks with > threefold opening had increased 
colocalization with H3K4me3 and H3K9ac compared to peaks with weaker 
or no increase. Fig. S3. Changes in histone ChIP-seq signal between MV4-
11 and MV4-11R cells. A) H3K27me3 signal decreased, B) H3K27ac signal 
increased, and C) H3K4me3 signal did not change in the MV4-11R cells 
compared to the MV4-11 cells. Fig. S4. Stranded and unstranded RNA-seq 
coverage tracks created with BAMscale. Fig. S5. Comparison of deposited 
END-seq and OK-seq data reprocessed with BAMscale.
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