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METHODOLOGY

ATAC‑seq normalization method can 
significantly affect differential accessibility 
analysis and interpretation
Jake J. Reske1, Mike R. Wilson1 and Ronald L. Chandler1,2* 

Abstract 

Background:  Chromatin dysregulation is associated with developmental disorders and cancer. Numerous methods 
for measuring genome-wide chromatin accessibility have been developed in the genomic era to interrogate the 
function of chromatin regulators. A recent technique which has gained widespread use due to speed and low input 
requirements with native chromatin is the Assay for Transposase-Accessible Chromatin, or ATAC-seq. Biologists have 
since used this method to compare chromatin accessibility between two cellular conditions. However, approaches for 
calculating differential accessibility can yield conflicting results, and little emphasis is placed on choice of normaliza-
tion method during differential ATAC-seq analysis, especially when global chromatin alterations might be expected.

Results:  Using an in vivo ATAC-seq data set generated in our recent report, we observed differences in chromatin 
accessibility patterns depending on the data normalization method used to calculate differential accessibility. This 
observation was further verified on published ATAC-seq data from yeast. We propose a generalized workflow for dif-
ferential accessibility analysis using ATAC-seq data. We further show this workflow identifies sites of differential chro-
matin accessibility that correlate with gene expression and is sensitive to differential analysis using negative controls.

Conclusions:  We argue that researchers should systematically compare multiple normalization methods before con-
tinuing with differential accessibility analysis. ATAC-seq users should be aware of the interpretations of potential bias 
within experimental data and the assumptions of the normalization method implemented.
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Introduction
Genome-wide quantitative sequencing methods for 
measuring genomic features have been recently devel-
oped to address various biological questions previously 
limited to locus-level interrogation. Current applica-
tions include gene expression [1], DNA methylation [2], 
protein–DNA interactions [3], histone post-transla-
tional modifications [4], 3D genome organization [5], 

nucleosome occupancy [6] and chromatin accessibil-
ity [7]. Researchers frequently apply these techniques 
to multiple cellular states in parallel to provide biologi-
cal insight into the questions being investigated. These 
approaches remove experimental predispositions by 
permitting genome-wide analysis paired with robust 
statistical testing procedures to improve null hypothesis 
rejection. As a result, there is an obvious need to bench-
mark and improve statistical or analytical methods used 
for properly interpreting the sequencing data generated 
by the molecular biology.

The latest major technique for effectively measuring 
genome-wide chromatin accessibility is the Assay for 
Transposase-Accessible Chromatin, or ATAC-seq. This 
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assay makes use of a Tn5 transposase reaction which 
preferentially inserts a 9-bp adapter fragment into acces-
sible regions of the genome [8]. Adapter-ligated genomic 
regions, which are typically nucleosome-depleted and 
euchromatic, can then be enriched for sequencing. This 
technique provides a similar readout as DNase I hyper-
sensitivity (DNase-seq) and formaldehyde-assisted 
isolation of regulatory elements (FAIRE-seq), which 
also measure accessible chromatin regions, and it is 
an orthogonal assay to Micrococcal nuclease digestion 
(MNase-seq), which measures nucleosome-occupied 
regions [9, 10]. However, ATAC-seq offers many benefits 
over comparable assays including a lower input material 
requirement, shorter assay time, in  situ library prepara-
tion, and further protocol adaptation to fresh-frozen tis-
sue [11]. These advantages have permitted precise in vivo 
regulatory genomic assays on small populations of sorted 
cells [12–17].

ATAC-seq has been used to both identify basal acces-
sible chromatin regions in a given cellular context as 
well as determine regions differentially accessible (DA) 
between two cellular states [18–20]. The former of which 
is analyzed bioinformatically through a linear process 
which often involves calling signal peaks throughout 
the genome. In this respect, the analysis framework for 
ATAC-seq is similar to ChIP-seq and DNase-seq [21], 
though few comprehensive analyses and best practice 
reports exist. Previous work has evaluated performance 
of computational methods in DNase-seq footprinting 
analysis, and similar efforts should be made for ATAC-
seq [22]. For DA analysis, ATAC signal at enriched 
regions is quantified and compared between multiple 
conditions. Determining DA regions with high con-
fidence poses a greater challenge due to variability in 
transposition reaction efficiency, upon which may be 
further compounded by in vivo heterogeneity and lack of 
guiding literature. The result is that outputs from multi-
ple tools for calculating DA regions are often conflicting. 
Furthermore, while there are indeed a small number of 
studies which have attempted to streamline ATAC-seq 
data processing [23–26], there is little emphasis on statis-
tical considerations of differential analysis.

Using our recently reported in  vivo sorted mouse 
ATAC-seq data set, we show that different tools and nor-
malization methods for calculating significant DA regions 
yield distinct results following disruption of a chromatin 
remodeler [17]. We show that qualitative techniques like 
MA plots (as applied in microarray analysis) can be used 
to identify and address global accessibility patterns which 
may or may not be technical in nature. We assess the 
DA outputs from 8 different analytical approaches and 
observe vastly different numbers of significant genome-
wide DA regions, promoter DA regions, and global 

accessibility trends depending on the approach used. 
By cross-comparing DA method outputs, we are able to 
define genes commonly identified as having a DA pro-
moter across multiple approaches. Integrating RNA-seq 
data allowed us to determine biological relevance of each 
method by assessing overlap between promoter DA and 
differential gene expression. Next, we analyze an ATAC-
seq data set by Schep et al. [18] and show that choice of 
DA method can alter biological interpretation. We also 
implemented negative control DA analysis in these data 
to highlight the sensitivity of our analysis in distinguish-
ing signal from noise. We then propose a generalized 
ATAC-seq data processing workflow intended for DA 
analysis and supply a detailed step-by-step guide which 
includes example code and scripts for users. This frame-
work includes key steps for robust comparison which 
reduce upstream biases, such as differing molecular 
complexities between libraries. We further test the abil-
ity of this workflow to identify biologically relevant peaks 
on a historic data set reported by original authors of this 
method, Buenrostro et al. [8], and show it is effective in 
these data. Finally, we propose a differential accessibility 
R workflow through csaw which permits testing of multi-
ple normalization methods. In whole, researchers should 
be aware of differing biological interpretations resulting 
from different normalization methods and any biases, 
which may not be considered or eliminated during analy-
sis. This is especially true wherein widespread chromatin 
structure alterations might be expected, such as when 
disrupting chromatin regulators. We further provide 
computational methodology that serves as a “one size fits 
all” guideline for ATAC-seq data analysis from reads to 
differential accessibility analysis.

Results
Comparison of 8 analytical approaches to calculate 
ATAC‑seq differential accessibility
To determine if choice of ATAC-seq DA analysis method 
influences experimental results, we compared 8 differ-
ent DA approaches (Table  1) using the published tools 
MACS2, DiffBind, csaw, voom, limma, edgeR, and DESeq2 
[27–33]. Analyses I and II follow the DiffBind protocol, 
originally intended for ChIP-seq data, which constructs 
a consensus read count matrix from MACS2 repli-
cate peak sets of m query regions by n samples. Briefly, 
MACS2 constructs an ATAC fragment pileup from 
aligned paired-end data, then builds a local bias track 
through a series of parameters to estimate background 
noise, and finally compares ATAC signal to the local 
background at each genomic bp using a Poisson test. 
Significant nearby regions are then merged into a peak. 
DiffBind then calculates linear scaling factors from either 
the total number of reads in each library, which assumes 
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that true global differences may be expected and techni-
cal bias is small, or the total number of reads in queried 
peak regions, which should eliminate global differences 
in favor of reducing any technical biases. The former 
method is applied in I and the latter in II. The count 
matrix with normalization factors is then subject to the 
DESeq2 framework of dispersion estimation and nega-
tive binomial generalized linear model (GLM) fitting for 
hypothesis testing, according to the design matrix. Anal-
yses III through VI follow approaches described in the 
csaw manual [28]. III and IV count reads in query regions 
defined by MACS2 peak sets then filter low-abundance 
windows, while V and VI use the csaw sliding window 
approach to quantify ATAC signal in the 300-bp interval 
query windows across the genome. The de novo query 
windows in V and VI then pass low-abundance filtering 
and are tested for signal enrichment greater than three-
fold over the surrounding 2 kilobase local neighborhood. 
For normalization, III and V implement the trimmed 
mean of M values (TMM [34]) method to generate linear 
scaling factors from counts in large, 10-kb genomic bins. 
This method trims the top and bottom quantiles of bins 
based on fold-change and signal abundance in order to 
minimize the changes between samples at the majority of 
bins. TMM assumes that most regions are not truly DA, 
and it assesses for systematic signal differences present 
across the genome that are presumed to be technical. 
Therefore, the TMM method should control for technical 
error more than scaling to total read depth by eliminating 
any systematic biases in library ATAC distribution, while 
still permitting true asymmetric differences specifically 
in DA regions. IV and VI implement a non-linear loess-
based (loess: locally estimated scatterplot smoothing) 
normalization method. This highly conservative method 
normalizes the signal distribution locally based on extent 
of ATAC signal abundance. As a result, the loess fit 

assumes a symmetric global distribution in which there 
are no true biological global differences in ATAC reac-
tion efficiency or distribution, and any evidence of these 
biases are technical and should be removed. The count 
matrices with respective normalization factors or offsets 
from all four of these csaw analyses are then subject to 
the edgeR statistical framework of estimating dispersions 
by empirical Bayes and quasi-likelihood GLM fitting 
for hypothesis testing, according to the design matrix. 
Finally, analyses VII and VIII follow the same procedure 
as III and IV with respect to using MACS2 peak query 
regions filtered by abundance in csaw, but instead they 
follow a voom transformation to log2 counts per million 
(log2CPM) in VII which are further quantile normalized 
in VIII. The log2CPM transformation simply scales by 
full library size and maintains those assumptions, while 
quantile normalization equalizes the signal distribution 
across all libraries [35]. Quantile normalization should 
function analogously to loess normalization by eliminat-
ing any global or trended biases, and it has been previ-
ously applied to ATAC-seq data [20]. The (normalized) 
log-count matrices from these two analyses are then 
mean–variance estimated to generate weights for limma 
linear modeling and hypothesis testing by empirical 
Bayes-moderated statistics.

Choice of ATAC‑seq analytical approach is a key step 
in determining differential chromatin accessibility
We recently reported an ATAC-seq data set in which 
chromatin accessibility was compared between sorted 
mutant and control mouse endometrial epithelial cells 
following disruption of a common tumor suppressor 
and oncogene [17]. In this in  vivo study, a chromatin 
remodeler protein, ARID1A, was disrupted along with 
induced expression of a constitutively active oncopro-
tein, PIK3CAH1047R, resulting in myometrial [17] and 
peritoneal [36] invasion in LtfCre0/+; (Gt)R26Pik3ca*H1047R; 
Arid1afl/* mutant mice. Mutant and wild-type endome-
trial epithelial cells were positively selected by a surface 
marker, EPCAM, and purified by magnetic bead separa-
tion [17]. ATAC-seq was selected as a suitable method 
for analyzing chromatin accessibility changes in sorted 
cells due to feasibility of supplying low input material.

We next compared chromatin accessibility patterns 
between mutant and control endometrial epithelial pop-
ulations using the 8 DA approaches. Different patterns 
of DA measurements were observed through MA plot 
visualization depending on the choice of DA approach 
used (Fig. 1). MA plots are a type of Bland–Altman plot 
applied to genomic data, where they were originally used 
in microarray analysis [37]. MA plots depict global pat-
terns of measurements compared between two sam-
ples, where each tested genomic feature is quantified by 

Table 1  Description of  8 approaches used to  calculate 
ATAC-seq differential accessibility

# Genomic 
regions

Tool Normalization DA testing

I MACS2 [27] DiffBind [29] Full library size DESeq2 [31]

II MACS2 [27] DiffBind [29] Reads in peaks DESeq2 [31]

III MACS2 [27] csaw [28] TMM [34] edgeR [30]

IV MACS2 [27] csaw [28] Loess edgeR [30]

V csaw [28] csaw [28] TMM [34] edgeR [30]

VI csaw [28] csaw [28] Loess edgeR [30]

VII MACS2 [27] csaw [28] | voom 
[32]

Log2cpm limma [33]

VIII MACS2 [27] csaw [28] | voom 
[32]

Quantile [35] limma [33]
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the difference between the two groups as the y-axis (M) 
and signal intensity as the x-axis (A). For example, TMM 
normalization of the MACS2 peaks read count matrix 
in III shows the majority of these genomic regions are 
increasing accessibility in mutant cells compared to con-
trol cells, whereas a small minority are decreasing. The 
TMM approach is similar to the default normalization 
method of DiffBind in I which scales counts based on 
library size, but TMM only considers regions expected 
to be unchanged for generating normalization factors. 
These observations are in contrast with the DA results 
of a more conservative loess-based count adjustment 
in IV. The loess normalization yielded more significant 
DA regions that were decreasing rather than increasing 
accessibility. MA plots for DA regions following all vary-
ing analyses show how these global patterns are affected 
through different normalization methods. The DA distri-
bution is shifted upwards in the TMM normalized win-
dows, which may or may not be technical in nature, and 
is corrected with the loess normalization.

We next performed a detailed comparative analy-
sis of the DA outputs from all 8 different approaches. 

The number of significant DA regions identified by an 
FDR < 0.10 threshold ranged from 33 to 24,450 with 
varying proportions of regions increasing vs. decreasing 
accessibility (Fig. 2a). Genomic annotation of these peaks 
by HOMER [38] showed that gene promoters, defined as 
a region within 3 kb of a TSS, constituted varying extents 
of the DA regions ranging from 6% to 51% (Fig. 2b). How-
ever, in 6 out of the 8 tested approaches, gene promot-
ers were predominantly increasing in accessibility overall 
(Fig.  2c). This comparative analysis permitted the prob-
able conclusion that gene promoters are mostly increas-
ing in accessibility in mutant cells, even though the global 
patterns observed in comparisons between each DA 
method show discordance.

Understanding what gene promoters display affected 
accessibility is biologically informative since promoter 
chromatin accessibility often correlates with transcrip-
tion [7, 39]. We first asked how many genes were com-
monly identified as exhibiting a DA promoter region 
among the multiple tested approaches. Strikingly, no 
genes were found commonly among all 8 approaches, 
though certain sets of genes were commonly identified 

Fig. 1  DA distributions from the same ATAC-seq data set analyzed by 8 different DA approaches. Example MA plots for ATAC-enriched regions 
of interest analyzed for differential accessibility by different approaches. I and II are from DiffBind using MACS2 peak sets and with scaling factors 
derived from full libraries or reads in peaks only, respectively. III and IV are from csaw using MACS2 peak sets as query regions with either a TMM or 
non-linear loess-based normalization method. Likewise, V and VI are from csaw, but instead using de novo query regions identified through local 
neighborhood enrichment. VII was calculated using MACS2 peak sets transformed to log2 counts per million (log2CPM) by voom which is further 
quantile normalized in VIII. MA plot X-axis represents average ATAC signal abundance at that region, while Y-axis is the log2 difference in ATAC signal 
between the two conditions. Black dots represent non-significant regions, and red dots represent significant (FDR < 0.10) DA regions. Blue lines are 
loess fits to each distribution with 95% confidence intervals shaded in gray
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in multiple approaches (Fig.  2d). As shown by pathway 
enrichment analysis, choice of DA approach also led to 
differences in biological processes observed for promot-
ers with affected chromatin accessibility. Epithelial–mes-
enchymal transition (EMT) was uniquely highlighted in 
significant DA promoter genes from DA approaches IV, 
V, VII, and VIII as opposed to other methods (Fig.  2e). 
We previously reported a role of ARID1A and PIK3CA 
mutations in EMT-related processes through multiple 
molecular and cell-based in vitro and in vivo assays [17].

A commonly used approach to validate chromatin acces-
sibility observations is to compare the results with gene 
expression data. Next, we asked if those genes with a sig-
nificant DA promoter region found in any one of the DA 
approaches were associated with differential expression 
(DE) in mutant vs. control endometrial epithelial popula-
tions. One issue is that quantifying direct overlap between 
promoter DA and gene DE is sensitive to the DA FDR 
threshold. To overcome this, we implemented a precision–
recall (PR) curve to predict gene DE status (binary, based 
on RNA-seq FDR < 0.05 threshold) with promoter DA 
FDR values yielded by a given DA analysis. The PR curves 

showed modest predictive ability of promoter DA, though 
analyses III, IV, V, and VIII were better predictors of gene 
expression changes than the others (Additional file 1: Fig-
ure S1a). The predictive abilities are most apparent before 
20% recall (i.e., 20% of all DE genes with a tested promoter 
ATAC region), indicating that gene expression changes 
observed in this experiment are not entirely determined by 
alterations in promoter chromatin accessibility.

We further investigated how FDR thresholding could 
affect DA outputs. We observed different FDR thresh-
olds between our 8 different approaches that elicited a 5% 
null hypothesis rejection, ranging from FDR = 0.00331 
(I) to FDR = 0.936 (VI) (Additional file  1: Figure  S1b). 
As such, we compared the number of DE genes with a 
DA promoter region (Additional file  1: Figure  S1c) and 
saw that this was highly dependent on FDR threshold. 
These results suggest that FDR thresholding can change 
between DA testing methods, and optimizing this aspect 
of the analysis may also improve results and interpreta-
tion. Collectively, all of these analyses underscore the 
importance of comparative analysis with multiple DA 
outputs before settling on conclusions. Furthermore, 

Fig. 2  Output comparison of approaches for computing differential accessibility. a Output comparison of 8 approaches described in Fig. 1 for 
calling significant DA regions in ATAC-seq data, separated by increasing vs. decreasing accessibility regions. b Comparison of same 8 approaches 
divided by significant DA promoter regions (within 3 kb of a TSS) vs. distal (further than 3 kb of a TSS). c Comparison of significant DA promoter 
regions in all 8 approaches segregated by increasing vs. decreasing accessibility. d Quantification of overlapping genes associated with a significant 
DA promoter region between all 8 approaches. e Gene set enrichment of Hallmark MSigDB pathways among genes with DA promoters for all 8 
approaches. Enrichment displayed as observed/expected ratio, where red values indicate pathway overrepresentation
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choosing a conservative normalization method may 
reduce both the need for such rigorous comparisons or 
use of multiple independent assays.

Temporal chromatin accessibility measurements in yeast 
also display normalization bias
In addition to comparing the effects of genetic muta-
tions or other treatment conditions, examining temporal 
changes in chromatin accessibility in cell populations is 
another application of ATAC-seq DA analysis. We uti-
lized the Schep et  al. [18] osmotic stress time-course 
ATAC-seq data set from yeast to determine if choice of 
DA analysis workflow yielded different results. Yeast 
cells were treated with 0.6  M NaCl and harvested cells 
for ATAC-seq at four, 15-min intervals, up to 60 min, for 
comparison against control cells at 0 min exposure (n = 2 
per time point). An advantage to this data set is the inclu-
sion of two control groups, one containing NaCl in the 
wash buffer and one without NaCl, which permits com-
parisons between two negative control groups. Schep 
et al. also utilized a published expression microarray data 
set by Ni et al. [40] from the same 0.6 M NaCl treatment 
design, in which three patterns (unchanged, upregulated, 
and downregulated) were defined based on osmotic 
stress response over time. Schep et  al. reported that a 
subset of genes from each expression response pattern 
also displayed similar profiles with respect to promoter 
accessibility change [18].

Our workflow detected between 1271 and 1894 
genome-wide naïve overlap peaks at any given time con-
dition, resulting in between 2261 and 2601 tested DA 
regions depending on the DA analysis approach used. 
DA comparison of the two control groups with all 8 ana-
lytical approaches resulted in very few statistically sig-
nificant DA regions (FDR < 0.05), ranging from 0 to 85 
regions (Additional file  1: Figure  S2). This in contrast 
with the 15-min (n = 2) vs. 0-min control (n = 4) compar-
ison, in which between 491 and 1082 regions were deter-
mined significantly DA (Additional file  1: Figure  S3a). 
Because the yeast genome is highly compact with func-
tional genes and relatively few introns or other distal 
regulatory elements (compared to vertebrates), > 95% of 
DA regions at 15 min exposure were located within gene 
promoters (defined as − 2000 to + 200 bp from TSS) with 
every approach (Additional file  1: Figure  S3b). We then 
determined the overlap of promoter regions displaying 
increasing or decreasing accessibility with each of the 
three gene expression patterns defined by Ni et  al. We 
were able to classify DA regions and gene expression pat-
terns for all 8 approaches, with up to 75% of the increas-
ing accessibility promoter regions and up to 70% of the 
decreasing accessibility regions classified by expres-
sion changes (Additional file  1: Figure  S3c). However, 

we noted a wide range in the number of genes display-
ing concordant gene expression and promoter chromatin 
accessibility changes (Additional file 1: Figure S3d).

The most compelling observations occurred when we 
assessed the full spectrum of gene expression and chro-
matin accessibility changes across the entire time-course 
series. Certain DA analyses showed biologically expected 
changes in overall accessibility that reflected expression, 
such as II, IV, and VIII, while the accessibility profiles 
from other approaches appeared asymmetrical indi-
cating technical bias (Fig.  3). With some DA analyses, 
strong DA statistical significance is observed among sta-
bly expressed genes, which are not expected to display 
accessibility changes (Additional file  1: Figure  S4). In 
most cases, the MA plot profiles were predictive of the 
gene expression and chromatin accessibility patterns 
observed throughout the time course. In 4 DA methods 
with an asymmetrical MA plot trend (I, III, V, and VII), 
the displayed chromatin accessibility profiles over the 
time course did not match the direction of gene expres-
sion change (Fig.  3). Most importantly, even in a highly 
controlled time-course experiment in yeast, certain DA 
analyses can yield technically discordant results that do 
not align with the orthogonal assays.

Generalized ATAC‑seq workflow for differential chromatin 
accessibility analysis
Various studies have described ATAC-seq quality control 
and data processing for non-computational scientists, 
but few emphasize DA analysis [23–26]. Moreover, we 
noted a literature gap in the importance of standardiz-
ing molecular complexity before quantifying differences 
between experimental ATAC libraries. This, coupled with 
our observation that choice of normalization method 
impacts DA results, led us to develop a comprehensive 
and easy-to-follow computational workflow for differen-
tial ATAC-seq data analysis.

The workflow presented in Fig. 4 is devised to be widely 
applicable to any ATAC-seq data set or experimental 
design. It is based after the standardized ENCODE pipe-
line devised by Kundaje et  al. (https​://libra​ries.io/githu​
b/kunda​jelab​/atac_dnase​_pipel​ines) with modifications. 
Example applications include calling baseline accessible 
regions in naïve cells and identifying DA genomic regions. 
The field typically accepts data sets with at minimum 
two biological replicates for standard peak calling, as 
was established by ENCODE for ChIP-seq data [41], and 
at least two biological replicates are absolutely required 
for any DA statistical analysis. For each step, we have 
included a descriptive phrase along with the software 
tools used and example code. A detailed description of the 
workflow is available in Additional file 1: Methods, along 
with a machine-readable text version with comments 

https://libraries.io/github/kundajelab/atac_dnase_pipelines
https://libraries.io/github/kundajelab/atac_dnase_pipelines
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(Additional file 2). Custom Unix scripts for certain work-
flow functions are also supplied (Additional files 3, 4, 5). 
Notably, we implemented the ENCODE-defined naïve 
overlap to determine biological replicate peak concord-
ance. This method calls peaks on pooled replicates, and 
then identifies peaks displaying at least 50% overlap 
with all single replicate peaks. We have supplied a Unix 
shell script (naiveOverlapBroad.sh, Additional file  5) to 

execute this function for computing naïve overlap from 
two broadPeak replicates and can be easily modified to 
support more replicates. Additionally, publicly available 
blacklist regions (ENCODE consortium) refer to highly 
repetitive or unstructured regions that display artificially 
high signal in genomic experiments [42].

A major addition to our workflow is quantifying and 
normalizing library molecular complexity. Often times, it 

Fig. 3  Comprehensive DA analysis and gene expression comparisons of yeast osmotic time-course series. Time series analysis of the Schep et al. 
osmotic stress in yeast ATAC-seq data set with all 8 DA approaches. MA plots are shown for 15-min exposure vs. 0-min controls and exemplary 
of global effects of data normalization. Time-course line plots depict the mean change in accessibility at each time point compared to control 
samples, for all gene promoter ATAC regions defined by respective gene expression changes. Gene expression changes following the same 0.6 M 
NaCl treatment reported by Ni et al. are defined as stable expression (gray line), upregulated expression (red line), and downregulated expression 
(blue line). See Additional file 1: Figure S4 for complete data and statistical analysis of time-course series with all 8 approaches
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is desired to quantify and compare ATAC signal at dif-
ferent genomic loci which are not typically part of an 
ATAC-seq or differential ATAC-seq analysis framework. 
This could involve genomic tiling, i.e., quantifying sig-
nal in evenly distributed genomic intervals, or quantify-
ing ATAC at regions defined through other assays, such 
as ChIP-seq, or k-means clustering [20, 43–45]. For cer-
tain analyses, it may not be appropriate to implement 
one of the normalization methods described herein, as 
determining proper biological or statistical assumptions 
may not be plausible. Rather, a linear transformation 

approach is often implemented, such as scaling libraries 
by read depth. However, this method assumes no differ-
ences in global library preparation biases, such as differ-
ing ATAC reaction efficiency. A potential result of such 
biases is affected sequence diversity which manifests 
in library molecular complexity, or the estimated num-
ber of sequenced molecules as determined by duplica-
tion rates. If uncorrected, libraries of equivalent read 
depth may be confounded by complexity in downstream 
analysis. Instead, libraries can be normalized to the esti-
mated number of sequenced molecules, determined by 

Fig. 4  Generalized ATAC-seq data processing workflow intended for comparative analysis. Stepwise bioinformatics process and example 
commands for analyzing ATAC-seq data from raw reads to calling peaks for downstream differential accessibility analysis. Consider “treat1” as an 
example mouse ATAC-seq Illumina paired-end library. Blue text denotes optional or conditional steps dependent on experimental design and 
desired output. Users seeking only to discover replicate-concordant accessible regions in a singular cell state may wish to call naïve overlapping 
peaks, though this step is not necessary for differential accessibility analysis. Bash scripts for Tn5 coordinate shift (bedpeTn5shift.sh), minimal BEDPE 
format conversion (bedpeMinimalConvert.sh), and calling naïve overlap broad peaks (naiveOverlapBroad.sh) are located in the additional files section 
along with a machine-readable text version of this workflow
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duplication rates as the library molecular complexity. 
This method mitigates potential biases by considering 
that the relative distribution of transposase integration 
(reads at a given feature) is most biologically informa-
tive under an equivalent number of transposase reactions 
(total molecules sequenced, i.e., molecular complexity).

We suggest estimating the complexities of all samples 
in the compared conditions, and then performing a sto-
chastic subsampling process in order to normalize all 
samples to equivalent molecular complexity. All analyses 
presented in this study have undergone this step unless 
specifically stated otherwise. The R packages preseqR and 
a wrapper ATACseqQC have implemented functions to 
estimate complexity by calculating a duplicate frequency 
matrix then estimating the number of unique molecules 
sequenced (i.e., molecular complexity) in each library 
sample [25, 46]. samtools view can then be used to sub-
sample libraries based on these estimates. In support that 
the stochastic subsampling process should not greatly 
affect experimental results, a replicated analysis with two 
different random subsampling seeds yielded highly simi-
lar and overlapping results from peak calling (Additional 
file  1: Figure  S5a) and DA analysis (Additional file  1: 
Figure S5b).

Among our sorted mouse epithelial cell ATAC-seq 
data set, control libraries had lower molecular complexi-
ties than mutant libraries (Additional file  1: Figure  S6a, 
b), which we corrected by subsampling (Additional 
file  1: Figure  S6c). By performing this complexity-nor-
malization process, we had improved confidence that 
the observed ATAC differences were biological and not 
technical in nature. An example of the functional effects 
of complexity normalization is illustrated through ATAC 
signal quantification at a set of significant DA promoter 
regions (FDR < 0.10) defined by approach IV. 35 promoter 
regions calculated as significantly decreasing accessibility 
by this method did not yield statistical significance when 
quantifying ATAC RPKM in read depth-normalized 
libraries (Additional file 1: Figure S6d), but the decreas-
ing accessibility patterns become more evident when we 
compare complexity-normalized libraries (p = 0.0196, 
two-tailed paired Wilcoxon test) (Additional file  1: Fig-
ure S6e). This analysis highlights the confounding effects 
of library molecular complexity in comparative ATAC-
seq analysis. Moreover, it supports the use of complexity-
normalized libraries for certain quantitative purposes in 
particular.

Proposed workflow effectively retains ATAC‑seq peak calls 
in an independent data set
To further assess the effectiveness of our ATAC-seq 
data analysis workflow, we tested it on one of the origi-
nal reported data sets generated by Buenrostro et al. [8]. 

ATAC-seq libraries were generated on three replicates 
of 50,000 GM12878 human lymphoblastoid cells, and 
the reported bioinformatic analysis yielded a replicate-
merged peak set of 99,885 accessible chromatin regions 
via ZINBA [47]. From these data, we are able to assay the 
ability for our proposed workflow to identify biologically 
relevant ATAC-seq peaks. Through our workflow, we 
identified 20,945 genomic regions which MACS2 called 
a significant broad peak in all three replicates, of which 
20,909 (99.8%) were also retained in the naïve over-
lap peak set indicating replicate peak region concord-
ance > 50% (Fig.  5a). To directly compare hg38-aligned 
naïve overlap peaks called through our workflow with 
the hg19-aligned Buenrostro et  al. ZINBA peak set, we 
lifted the hg19 coordinates to hg38 with 99.96% success-
ful mapping rate [48]. We identified extremely strong 
concordance between the naïve overlap peak set and 
Buenrostro et al. ZINBA peak set, with over 97% of the 
naïve overlap peaks intersecting (Fig. 5b). This indicated 
that nearly all of the naïve overlap peak set regions were 
also identified with the Buenrostro et al. ZINBA peak set, 
but there were an additional nearly 80,000 peaks which 
were not identified in the naïve overlap peak set. When 
the two peak sets were annotated via HOMER [38], we 
observed even stronger concordance and conservation 
between the genes with an identified promoter ATAC-
seq peak in both peak sets. Whereas only roughly 20% of 
the genome-wide Buenrostro et  al. ZINBA peaks inter-
sected with naïve overlap peaks, approximately 60% of 
the genes with an identified promoter ATAC-seq peak 
were also identified in the naïve overlap peak set (Fig. 5c).

By leveraging a GM12878 microarray gene expres-
sion data set from Ernst et al. [49], we were able to next 
compare the expression of genes which were identified 
as having a promoter ATAC-seq peak concordantly or 
uniquely between the two peak sets. Again, we observed 
strong concordance between the genes measured for 
expression by microarray which had a promoter ATAC-
seq peak in the two peak sets (p = 0, hypergeometric 
enrichment), where 5508 were concordantly identified 
between both, 2585 were uniquely called in the Buenros-
tro et al. ZINBA peak set, and 161 were uniquely called 
in the naïve overlap peak set (Fig.  5d). We then com-
pared the expression of the genes in each of these three 
bins. Genes were equivalently highly expressed that were 
concordantly identified as exhibiting a promoter ATAC 
between both peak sets or uniquely in the naïve overlap 
peak set, but the 2585 genes which were uniquely iden-
tified as having a promoter ATAC peak in the Buenros-
tro et al. ZINBA peak set were lowly expressed (Fig. 5e). 
Furthermore, all genes with a promoter ATAC peak in 
either of the peak sets were indeed overall more highly 
expressed than genes which never exhibited a promoter 



Page 10 of 17Reske et al. Epigenetics & Chromatin           (2020) 13:22 

Fig. 5  Conservative and relevant peak calling by proposed framework exemplified on Buenrostro et al. data. a Overlap of MACS2 broad peaks 
called with proposed workflow between independent GM12878 ATAC-seq replicates from Buenrostro et al. Naïve overlap identifies 99.8% of 
fully replicate-intersecting peaks. b Genome-wide overlap of naïve overlap peak set generated herein compared to ZINBA peak set reported by 
Buenrostro et al. c Overlap of genes with detected ATAC promoters identified in the two peak sets as in b. d Overlap of expression-measured genes 
with detected ATAC promoters in the two peak sets compared to all measured genes. GM12878 expression data was pulled from a microarray data 
set generated by Ernst et al. e Microarray log2 expression levels (RMA) of genes segregated by promoter ATAC peak status detected between the 
two peak sets. Genes were binned as having a detected peak in both sets, only by naïve overlap herein, only by Buenrostro et al. ZINBA, or neither. 
Statistic is unpaired, two-tailed Wilcoxon test. f Correlation of promoter ATAC peak signal and gene expression for 5508 genes with a detected 
promoter ATAC peak in both peak sets. ATAC signal is quantified by reads in peak (log10 scale; linear values displayed on axis for clarity), and the 
strongest value was selected to represent promoters with multiple peaks. Correlation statistics displayed are Pearson and Spearman. Overlaid linear 
fit is displayed in red and loess in blue. Fisher Z-transformation was used to compare correlation coefficients between both peak sets. g Example 
ATAC-seq signal tracks showing peaks called (black bars) at different loci between the two peak sets. All three replicates are overlaid with darker 
colors representing overlapping replicates. Y-axis is log likelihood ratio of peak signal
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ATAC peak. A further extension of this analysis com-
pared the correlation between promoter ATAC peak 
signal and respective gene expression for the 5508 com-
monly identified genes with microarray expression data, 
as it is widely accepted that higher promoter chromatin 
accessibility generally corresponds to higher gene expres-
sion. Correlations between promoter ATAC peak signal 
and gene expression were highly significant in both peak 
sets and analytical approaches and were not significantly 
different (Fig.  5f ). We further observed that the naïve 
overlap peak set typically identified only conservative 
ATAC-seq peaks, yet there were also examples of robust 
ATAC signal which were only called as significant with 
the naïve overlap peak set, such as near the PPIP5K1 pro-
moter (Fig.  5g). Altogether, these analyses suggest that 
the workflow proposed herein is able to identify conserv-
ative regions of significant ATAC signal which corrobo-
rate gene expression observations.

csaw differential accessibility workflow permits testing 
of multiple normalization methods
We suggest using csaw as a go-to toolkit for standard 
downstream differential accessibility analysis. csaw is a 
flexible R package, originally designed for ChIP-seq anal-
ysis, which accepts sorted BAM files for DA quantifica-
tion via edgeR quasi-likelihood methodology following 
any one of numerous implemented normalization meth-
ods to address many biological scenarios [28, 30]. Fur-
thermore, csaw can be supplied MACS2 peak coordinates 
for DA analysis or alternatively perform de novo ATAC 
enrichment detection with sliding windows and proper 
type I error control. These features make csaw an attrac-
tive tool for comprehensive DA analysis. For DA analysis, 
we have graphically represented a typical csaw workflow 
in R (Fig. 6), which is also available as a machine-readable 
text version (Additional file 6). This workflow outlines a 
continuation of Fig.  4 into complete DA analysis which 
aids users to compute DA approaches III, IV, V, and VI 
for output evaluation. The sensitivity of the proposed 
workflows in distinguishing signal from noise is further 
evident in DA analysis of two independent groups of 
negative controls from the Schep et  al. yeast ATAC-seq 
data set (see Additional file 1: Figure S2).

The final steps of this graphic detail generation of an 
MA plot through ggplot2 [50] to assess normalization 
outcomes. The distribution of an MA plot from DA anal-
ysis provides insight into trends or potential biases within 
the data, which users should critically consider. An 
upward or downward shift in the MA distribution could 
either indicate a global effect or substantial technical 
bias, and certain normalization methods will maintain 
or eliminate these features in the data. If the distribution 
further does not appear symmetrical along the horizontal 

axis, then a trended bias may be present which can be 
corrected with conservative normalization approaches 
like quantile or loess. Ultimately, the researcher must 
consider prior biological knowledge and the experimen-
tal design to determine if data trends should be accepted 
as biological or eliminated as technical.

Discussion
This study has revealed that differential accessibility 
analysis of ATAC-seq data can be sensitive to underlying 
biases within the data, as might be expected. The design 
of the primary analyzed data set involved disrupting a 
chromatin remodeler subunit, which probably affects 
genome-scale chromatin structure, and comparing 
chromatin accessibility to that of control cells. Analyti-
cal interpretation is further confounded by in  vivo het-
erogeneity in sorted cell populations. The consequence 
is that common tools and approaches for performing DA 
analysis give vastly different results that are difficult to 
interpret at first glance. MA plots of DA results displayed 
global ATAC distribution biases that were only thor-
oughly eliminated through certain normalization meth-
ods, like loess-based count adjustments. By comparing 
multiple DA analysis outputs, common patterns emerged 
that permitted high likelihood conclusions, such as gene 
promoters increasing in accessibility following chroma-
tin remodeler subunit disruption. Application of preci-
sion–recall analysis to predict RNA-seq gene expression 
changes with DA data supported biological relevance of 
certain DA methods, since gene expression and promoter 
chromatin accessibility are known to correlate. This also 
further emphasized that pairing ATAC-seq with RNA-
seq can be a useful approach to interpreting chromatin 
accessibility observations. FDR thresholding analyses 
suggest that optimizing the DA significance threshold 
can also improve results and interpretation. Overall, 
these results indicate that naively relying on one sin-
gle DA analysis approach may lead to false conclusions, 
particularly so without assessing for presence of biases 
within the data. In the case of modifying or disrupting 
chromatin regulators, these biases may be commonplace 
and should be critically considered before further inter-
pretation of data. Furthermore, certain methods are more 
conservative than others and can be initially selected to 
improve result confidence without the need to perform 
rigorous method comparisons.

The issue of intrinsic biases within ATAC-seq data 
for experimental designs where global changes may 
be expected are difficult to interpret. In the case of the 
experimental data presented here, limited prior knowl-
edge is available whether or not disruption of this specific 
chromatin remodeler subunit should affect widespread 
chromatin structure, but it is not improbable. Thus, we 
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Fig. 6  csaw workflow for multiple differential accessibility analyses in R. Graphical representation of proposed csaw workflow in R for calculating 
differential accessibility. Consider an experimental design with n = 2 biological replicates from two conditions: “treat” and “control”



Page 13 of 17Reske et al. Epigenetics & Chromatin           (2020) 13:22 	

were not able to determine if the inherent biases within 
the data are biological or technical, and we opted to 
remove them as technical. However, this decision could 
result in significant type II errors interpreted as technical 
in origin, if in fact they are truly related to the biology. 
Multiple downstream comparative analyses supported 
the loess normalization method as conservative and bio-
logically relevant to our data set, so it was chosen as the 
normalization method with which to proceed forward for 
our published downstream analysis [17]. Though, signifi-
cant information may have been lost by eliminating the 
global, trended biases that were observed within the data.

The observation that comparing ATAC-seq samples 
between two conditions may be subject to substantial 
experimental biases was actually accounted by Schep 
et  al. in the yeast osmotic stress differential ATAC-seq 
report [18]. The authors specifically noted that, ‘varia-
tion in the degree of enrichment of fragments with open 
chromatin regions can affect differential accessibility 
measurements between ATAC-seq samples’. As such, 
they followed count quantile normalization with a low-
ess curve fit transformation to eliminate trended biases 
within the data. This account further supports that dif-
ferential ATAC-seq analyses are sensitive to experimen-
tal, technical biases, such as ATAC reaction efficiency, 
as well as the rationale behind use of the loess normali-
zation method to elicit a highly conservative DA result. 
Still, this normalization method is not widely used for 
ATAC-seq DA analysis. It is also important to note that 
similar observations have been reported for ChIP-seq 
analysis, where non-linear loess normalization meth-
ods were proposed and developed to eliminate system-
atic errors between libraries [51]. However, the rationale 
behind a loess fit assumes that the data should be sym-
metrical without a global change observed, so users 
should be aware that implementing this technique may 
hide any true global alterations present between the two 
conditions.

Biases inherent to quantitative genomic techniques 
based on chromatin feature signal enrichment have been 
observed and considered previously [52]. ATAC-seq fun-
damentally relies on an enzymatic reaction for library 
construction, which is likely to be affected by amount of 
enzyme, number of nuclei, and chromatin compaction 
and structure. ATAC-seq was recently reported to exhibit 
a sequence-specific bias distinct from DNase I libraries 
[53]. MNase digestion has previously been shown to be 
highly sensitive to enzymatic activity and also displays 
sequence specificity bias [54, 55]. In ChIP-seq libraries, 
potential bias in factor binding measurements is thought 
to be derived from local transcriptional activity and chro-
matin structural properties [56]. Our current investiga-
tion has shown that quantitative comparative analysis of 

ATAC libraries is confounded by technical bias. When 
alternative methods to detect chromatin accessibility 
changes are unavailable (e.g., due to low cell numbers or 
input retrieval), users should empirically determine the 
most appropriate normalization methods and employ 
orthogonal assays, such as gene expression, for compari-
sons with ATAC-seq data.

Calculating linear library normalization factors is a 
standard approach, but sensitive to biases. Here, we have 
shown that MA plots are a simple, qualitative approach to 
identifying systematic biases in experimental ATAC-seq 
libraries, as others have shown with ChIP-seq data [57]. 
Calculating the fraction of reads in peaks (FRiP) score, 
as described by ENCODE [41] and streamlined by Diff-
Bind, is a simple method to evaluating ATAC efficiency 
between libraries to determine whether or not a system-
atic bias may be present. In the case of substantially dif-
fering ATAC efficiencies, linear normalization factors can 
be derived from only reads in peaks, as in DiffBind, or by 
applying TMM to only high abundance regions, as is sug-
gested by the authors of csaw. As we have discussed, csaw 
also has a non-linear loess-based count normalization 
which can be easily implemented to assess its effects on 
DA calculation after the above considerations.

Before DA analysis, the most significant addition to 
our proposed standard ATAC-seq data analysis work-
flow is normalization of library complexity by random 
subsampling. In the case that ATAC reaction efficiencies 
are different between libraries, it is advised to investigate 
the library molecular complexity as a technical source 
for this error arising during sequencing. If less input 
material is retrieved from transposition for certain sam-
ples, and more PCR amplification cycles are required as 
a result [58], then bias is introduced into the amplified 
fragments dependent on GC content, fragment length, 
and oligonucleotide complexity [59]. If libraries are com-
plexity-normalized within an experimental design to the 
same estimated number of unique molecules, then direct 
quantitative comparison of unique fragments between 
conditions is more informative, e.g., integer feature read 
counts at loci identified in other assays. Like the system-
atic biases present in DA analysis, however, library com-
plexity normalization is currently also a flawed concept. 
In the case that a drastic global decrease in chromatin 
accessibility is truly biological, then less transposed DNA 
fragment retrieval is expected, and these libraries might 
exhibit lower complexity. In this scenario, complexity 
normalization may not be desired as it would confound 
the true chromatin biology. However, without independ-
ent knowledge, this decision is not easily made. Notably, 
others have approached similar problems in ChIP-seq 
through addition of exogenous chromatin from a distinct 
species as reference for IP efficiency and sequencing bias, 
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referred to as “spike-in” controls [60, 61]. More recently, 
this technique has been extended to incorporating a frac-
tion of spike-in live cells prior to lysis in the ATAC-seq 
protocol [62], and the effects of spike-in normalization of 
ATAC-seq data could help establish technical or biologi-
cal basis for global accessibility patterns, in principle.

The presented ATAC-seq workflow and the suggested 
DA toolkit are not absolute and should be improved as 
analytical methods continue to emerge. For example, one 
newly developed method implementing a hidden Markov 
model (HMM) showed better performance for differen-
tial ChIP-seq analysis than csaw or other sliding window 
approaches, which suffer in identifying narrow changes 
within large genomic domains [63]. At least one HMM tool 
has been developed specifically for calling nucleosome-
free regions within ATAC-seq data, and its implementa-
tion could be extended to differential analysis [64]. While 
our framework was able to identify both broad and nar-
row regions of strong ATAC signal in the Buenrostro et al. 
GM12878 data set, the peak calling thresholds may be too 
strict to identify truly nucleosome-depleted regions dis-
playing weak signal. Methods also currently exist for cor-
recting sequence-specific biases resulting from various 
chromatin digestion and enrichment techniques, and the 
extent of analytical affect from this correction should be 
evaluated [65, 66]. Currently, ATAC-seq normalization and 
DA approaches should be carefully considered to appropri-
ately reduce the inherent biases within each analysis.

Conclusions
We present data indicating that ATAC-seq is sensitive 
to bias when comparing chromatin accessibility across 
multiple conditions. We compared several commonly 
used, published methods for calculating differential 
accessibility to our previously reported in  vivo ATAC-
seq data set as well as a yeast ATAC-seq time series data 
set, and we observe conflicting results dependent upon 
the normalization method used. We provide intuitive, 
standardized bioinformatics methodology for analyzing 
ATAC-seq data by non-computational scientists. Our 
validated workflow also includes a critical, complexity-
normalization step. Altogether, we argue that researchers 
should properly normalize ATAC-seq data before calcu-
lating differential accessibility.

Methods
Analyzed data sets
Sequencing data used for analyses presented in this 
manuscript were downloaded from GEO accessions 
GSE121198, GSE66386, GSE47753, and GSE26312. Yeast 
genes with distinct expression response patterns follow-
ing 0.6  M NaCl exposure were defined and extracted 
from Supp. Table 4 reported by Ni et al. [40]

ATAC‑seq and differential accessibility analysis
See Figs. 4 and 6, and Additional file 1: Method for com-
plete workflow details and description. Mouse libraries 
were aligned to mm10 genome assembly, and yeast librar-
ies were aligned to sacCer3 genome assembly. ATAC-seq 
peaks were not filtered for blacklisted regions in yeast, 
as they are not defined in this organism. Presented DA 
analyses were computed through the use of R packages 
DiffBind, DESeq2, csaw, edgeR, voom, and limma as 
described in the “Results” section [28–33]. Workflows for 
all tools are described in detail in Additional file 1: Meth-
ods. The BAM files supplied to DA tools correspond to 
the coordinate sorted/indexed, duplicate removed, com-
plexity-normalized, properly paired restricted, non-mito-
chondrial, paired-end BAM files generated as described 
in Fig. 4.

RNA‑seq analysis
Differential gene expression results from previously 
reported RNA-seq data of LtfCre0/+; (Gt)R26Pik3ca*H1047R; 
Arid1afl/fl vs. control sorted mouse endometrial epithe-
lial cells were extracted from GEO accession GSE129784. 
3481 significant DE genes were selected by FDR < 0.05 
filtering. 24,097 total expressed genes were used as gene 
universe for enrichment analyses.

GM12878 gene expression microarray analysis
Raw data were downloaded from GEO for both 
GM12878 replicates generated by Affymetrix HT Human 
Genome U133A Array. CEL files were read into R 
through the affy package and normalized via the Robust 
Multi-Array Average (RMA) expression measure. RMA 
values are reported as log2 scale. The mean RMA value of 
both replicates was used for analyses in this manuscript. 
The 22,277 measured probes were collapsed to 11,369 
genes with a unique Ensembl and symbol identifier [67]. 
Expression comparisons of gene groups binned by ATAC 
peak status was achieved by unpaired, two-tailed Wil-
coxon test.

Bioinformatics and statistics
Mouse and human ATAC-seq peak coordinates were 
annotated by HOMER [38] with a modification to cis-
promoter classification as within 3000  bp of a canoni-
cal gene TSS. Yeast genomic regions were annotated 
by TxDb.Scerevisiae.UCSC.sacCer3.sgdGene R pack-
age using the genes() and promoters() functions with 
default settings (yeast promoters are defined as − 2000 
to + 200  bp around TSS) [68]. Unweighted precision–
recall curves were generated by the PRROC R package 
using the pr.curve() function [69]. For PR curve predic-
tive analysis, the strongest (lowest) promoter DA FDR 
value was selected for each expressed gene, for each 
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approach, and this value was used to predict boolean 
DE gene status segregated by RNA-seq DGE DESeq2 
FDR < 0.05 threshold. Read counts in ATAC-seq peaks 
were calculated by HOMER for correlation and box 
dot plot quantification. MACS2 was used to gener-
ate ATAC-seq signal tracks for display in IGV [27, 70]. 
MSigDB Hallmark pathway enrichment was reported as 
observed/expected ratios derived from expressed gene 
sets compared to the respective expressed gene uni-
verse [71]. Pathway hierarchical clustering by Euclidean 
distance and heatmap were generated by ComplexHeat-
map [72]. biomaRt was used for all gene nomenclature 
and mouse–human ortholog conversions [73]. The 
cumulative hypergeometric distribution was calculated 
in R for enrichment tests. ggplot2 was used for certain 
plotting applications throughout this manuscript [50].
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org/10.1186/s1307​2-020-00342​-y.

Additional file 1. Supplementary Information (Methods and Figures).

Additional file 2. ATACseq_workflow.txt—Example machine-readable 
Fig. 4 workflow including stepwise unix and R commands for ATAC-seq 
data processing.

Additional file 3. bedpeTn5shift.sh—Bash script for shifting coordinates 
in standard 10-column format BEDPE files to compensate for Tn5 adapter 
insertion as described in Buenrostro et al. See Fig. 4 for usage.

Additional file 4. bedpeMinimalConvert.sh—Bash script for converting 
standard 10-column format BEDPE to the “minimal” format defined by 
MACS2. See Fig. 4 for usage.

Additional file 5. naiveOverlapBroad.sh—Bash script for calculating naïve 
overlap broad peak set from 2 individual replicate peak sets and a pooled 
replicate peak set. Can be modified for to accept more replicates as 
desired. See Fig. 4 for usage.

Additional file 6. csaw_workflow.R—Example R workflow for differential 
accessibility analysis with csaw as graphically displayed in Fig. 6. Describes 
process for both TMM and loess normalizations and either supplying 
MACS2 peak sets as query regions or identifying de novo locally enriched 
windows.
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