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METHODOLOGY

MethylToSNP: identifying SNPs in Illumina 
DNA methylation array data
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Abstract 

Background:  Current array-based methods for the measurement of DNA methylation rely on the process of sodium 
bisulfite conversion to differentiate between methylated and unmethylated cytosine bases in DNA. In the absence 
of genotype data this process can lead to ambiguity in data interpretation when a sample has polymorphisms at a 
methylation probe site. A common way to minimize this problem is to exclude such potentially problematic sites, 
with some methods removing as much as 60% of array probes from consideration before data analysis.

Results:  Here, we present an algorithm implemented in an R Bioconductor package, MethylToSNP, which detects 
a characteristic data pattern to infer sites likely to be confounded by polymorphisms. Additionally, the tool provides 
a stringent reliability score to allow thresholding on SNP predictions. We calibrated parameters and thresholds used 
by the algorithm on simulated and real methylation data sets. We illustrate findings using methylation data from YRI 
(Yoruba in Ibadan, Nigeria), CEPH (European descent) and KhoeSan (southern African) populations. Our polymor-
phism predictions made using MethylToSNP have been validated through SNP databases and bisulfite and genomic 
sequencing.

Conclusions:  The benefits of this method are threefold. First, it prevents extensive data loss by considering only SNPs 
specific to the individuals in the study. Second, it offers the possibility to identify new polymorphisms in samples for 
which there is little known about the genetic landscape. Third, it identifies variants as they exist in functional regions 
of a genome, such as in CTCF (transcriptional repressor) sites and enhancers, that may be common alleles or personal 
mutations with potential to deleteriously affect genomic regulatory activities. We demonstrate that MethylToSNP is 
applicable to the Illumina 450K and Illumina 850K EPIC array data and is also backwards compatible to the 27K meth-
ylation arrays. Going forward, this kind of nuanced approach can increase the amount of information derived from 
precious data sets by considering samples of the project individually to enable more informed decisions about data 
cleaning.

Keywords:  Bisulfite sequencing, Illumina methylation array, Data analysis, Methylation probes, Single nucleotide 
polymorphisms (SNPs), Polymorphisms, Enhancers, CTCF sites
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Background
Interest in the role of epigenetics in human conditions, 
exemplified by studies in attention deficit hyperactiv-
ity disorder and autism [1], has risen exponentially from 
7100 PubMed indexed articles in 2007 to over 55,400 
in early 2019 [2]. This burgeoning field has identified 
disease-related alterations of DNA methylation rang-
ing from type 2 diabetes mellitus to autoimmunity and 
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cancer [3]. Outside of the disease context, there are few 
examples of epigenetic variations that are directly asso-
ciated with phenotypic differences. In one example, dif-
ferential methylation in B-lymphocytes obtained from 
White American, African American, and Han Chinese 
American individuals showed 439 CpG sites of which 
two-thirds were directly associated with the underlying 
genetic background, and one-third had no direct rela-
tion to genetic variation [4]. These findings indicate that 
distinct population-specific methylation patterns exist, 
and they result from a mixture of genetic and epigenetic 
causes.

Distinguishing some genetic and epigenetic phenom-
ena can be performed by combining DNA methylation 
and genotyping in order to remove sequence variants that 
coincide with methylated positions. However, for many 
epigenetic studies, genotype data are unavailable—high-
lighting a problem plaguing the use of methylation arrays. 
It is difficult to distinguish between true differential 
methylation at a CpG site versus the presence of a SNP 
at that site, which can be read as differential methylation 
in Illumina methylation array data. This distinction is 
essential for properly interpreting epigenetic effects that 
are independent of genetic effects within distinct popu-
lations. Moreover, because SNPs create bias in methyla-
tion data, conclusions from affected epigenetic studies 
could be erroneous. This point is exemplified by the study 
of Daca-Roszak et al. [5] that showed over 68% of inter-
rogated CpGs carried SNPs with strongly differentiating 
allele frequencies in inter-population comparisons.

Cytosine (C) to thymine (T) polymorphisms are 
the most frequent transitions occurring in the human 
genome; often driven by the spontaneous deamination 
of a methylated cytosine at CpG dinucleotides to yield 
thymine. The appearance of mixed pyrimidines (C and 
T) at a single genomic location also parallels the outcome 
of chemistry used to detect differential DNA methyla-
tion. In the latter case, sodium bisulfite treatment con-
verts unmethylated Cs to Ts, whereas methylated Cs 
remain unchanged. Thus, a common C to T polymor-
phism appearing specifically in one population could be 
misinterpreted as differential DNA methylation between 
individuals. Pinpointing sites across the array where this 
conflation may be occurring avoids erroneously calling 
differential methylation.

In general, there is broad agreement that variants can 
affect the performance of the arrays and influence the 
results, such that they should be considered when filter-
ing data [5–10], but the approaches are not standardized 
(Fig. 1). One conservative approach to this problem is to 
remove all probe locations known to harbor human genetic 
variants prior to investigating methylation. Such approach 
could be easily implemented using dropLociWithSNP()  
function from minfi Bioconductor package [11, 12]. For 
example, a recent publication advocates removing 190,672 
probes including 70,118 target CpG SNPs from the Illu-
mina 450K methylation array data, which amounts to a 
loss of 39% of the available CpG sites [7]. Because many of 
these polymorphisms may not be present in the sequences 
from the studied individuals and may show methylation 

Fig. 1  Venn diagram of known polymorphisms recommended for removal in published literature. a For Illumina 450K data, four publications 
agree on identification of 289,952 polymorphic positions [5–8], but do not agree on an additional 38,407 positions. b For Illumina Epic data, two 
publications [9, 10] agree on identification of 346,681 polymorphic positions but differ on another 42,369 positions. Data obtained via methylcheck 
python package
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differences that are correlated to a disease of interest or 
be unique to the population being studied, this approach 
needlessly discards almost as much methylation data as it 
retains. The same problems persist in the updated 850K 
CpG-site Illumina EPIC methylation array, potentially 
including even more polymorphic sites [13]. We found 
29,162 known SNPs at the target CpG site and more than 
147,867 overlapping the probe body. Some papers reason-
ably argue that subpopulation-specific sets of SNPs would 
not remove as many array probes from consideration, 
however this approach could only be limited to studies 
with homogeneous ethnicity and will likely also excessively 
remove sites with rare variants [9]. Another approach, an 
alternative to filtering probes with known variants, is to 
mask the outlier values themselves. Such an approach is 
implemented in probe-wise outlier detection with pwod() 
function in wateRmelon package [14] and may be suit-
able for preserving the methylation data for known SNP 
sites with rare variants. Beyond the effect of sites harbor-
ing common alleles, positions of novel variants that are 
not included on genotyping arrays would create bias in 
DNA methylation data unless additional information from 
accompanying whole genome sequence data is provided. 
This option of having matched whole genome sequence 
and methylation data is unlikely to be the default situation 
due to prohibitively high costs.

A few published studies have identified patterns in 
DNA methylation data, which can be used as flags for 
potential polymorphisms, copy number variants, or 
cross-hybridizing sequences [5, 7, 8]. One method called 
“gap hunting” has been developed to recognize these pat-
terns for quality control purposes [15]. The study high-
lighted that gap- (or whitespace) hunting in the cloud of 
methylation data points was a more robust approach than 
statistical data clustering, such as a Gaussian mixture 
modeling, for finding biases in methylation data created 
by SNPs. The method was used to flag locations in meth-
ylation array data that had characteristic clustered distri-
butions of data points indicative of potential problems in 
the underlying data. The method is quite extensive and 
identifies up to nine categories of potential alterations, 
resulting in a lot of calls, furthermore its default param-
eters appear to be calibrated for large-scale studies.

For ease of data interpretation and application, we pro-
duced a method for detecting and removing methylation 
data generated specifically at C or T SNP positions in the 
Illumina Infinium methylation arrays and implemented it 
in a software package named “MethylToSNP”. Requiring 
only methylation array data, the method is able to iden-
tify potential SNP sites present in a sample set of inter-
est by identifying the whitespace pattern. MethylToSNP 
enables researchers to avoid the overly conservative 
solution employed in many analyses, whereby all probe 

locations known to harbor human genetic variants are 
removed. Besides, MethylToSNP approach can be com-
bined with existing pipelines for novel SNP discovery 
and postprocessing, as it does not remove the probes but 
rather suggests them for further consideration. We tested 
MethylToSNP using Illumina methylation array data con-
taining known SNP positions, developed a confidence 
rating for our predictions, and validated our findings with 
bisulfite sequencing (for DNA methylation) and targeted 
Sanger sequencing or Illumina whole genome sequencing 
(for genotyping). To further test our method, we included 
methylation array data from four geographically and/or 
ethnically distinct populations. These included the well-
characterized LCL cell line-derived samples from the 
Yoruba in Ibadan, Nigeria (YRI) [16] and CEU of north-
ern and western European descent [17], each included as 
part of the HapMap genotyping consortium. We further 
applied the method to methylation array data generated 
from DNA extracted from whole blood for two ethnically 
and genetically distinct, yet geographically matched pop-
ulations from southern Africa, namely the KhoeSan and 
Bantu populations. Finally, in these datasets, we explored 
the frequency of novel SNPs in areas of functional activ-
ity in the human genome, namely enhancer regions and 
CTCF binding sites, to further emphasize the relevance 
of disentangling SNP presence versus differential DNA 
methylation when generating biological interpretations.

Results
MethylToSNP overview
MethylToSNP predicts the location of SNPs affecting 
Illumina methylation array data using only a matrix of 
methylation values. It generates a list containing the loca-
tions of all potential SNPs in the sample set, calculates 
a reliability score and annotates known SNPs according 
to the annotation source, for instance dbSNP [18]. Fol-
lowing calculation of a reliability score, a user can then 
selectively remove SNP-affected data from the analysis. A 
schematic diagram of the program can be found in Fig. 2. 
Each of the steps of the process is described in “Methods” 
section (and Additional file 1).

SNP‑finding algorithm
MethylToSNP exploits the characteristic methylation 
pattern found at SNP sites [5, 7, 8], to predict the pres-
ence of SNPs. A polymorphic site often returns three dis-
crete levels of methylation: for example, full methylation 
would correspond to a methylated CC genotype, partial 
methylation would correspond to a methylated CT geno-
type, and the absence of methylation would correspond 
to a TT genotype. In these cases, β-values fall into three 
levels, with gaps in between, when all samples are plot-
ted on a continuous scale of 0–1 (Fig. 3a). MethylToSNP 
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searches for the gaps associated with this pattern. For 
example, a location consistent with a SNP most often has 
samples near the high end of the range (0.75 and higher), 
some samples near the middle of the β-value range 
(around 0.4–0.6), and samples with β-values at the low 
end of the range (though not necessarily zero because 
of background noise). This pattern is reproducible at all 
SNP loci, however variation in the size of the range from 
low to high values creates slightly different boundaries 
of the whitespace at each position (Fig. 3b). By contrast, 
β-values for a site without a SNP might all fall within a 
narrow range, or across a continuum, with no large gaps 
falling in between data points. Thus, when a meC > T SNP 
is present, the limited combination of methylation values 
will produce three discrete “tiers” in the data separated 
by data-free regions or gaps, whereas when there are no 
large gaps in the data field, no SNP can be predicted.

SNP assessment in the YRI and CEU DNA methylation 
datasets
The YRI and CEU HapMap samples are well studied, lim-
iting the expectation of additional novel polymorphism 
detection and providing a reference dataset for testing 
the software tool. We tested results at 24,000 methylation 

probes in 77 YRI samples and 90 CEU samples. Methyl-
ToSNP flagged seven sites in the YRI data that we could 
easily validate. Moreover, the program also reported 
reliability scores at each site above the threshold of 0.5 
(see “Methods”). Two of the seven sites were present in 
dbSNP version 146 (i.e., methylation probes cg21505334 
and cg21226234) with heterozygous alleles reported 
for position cg21226234 (illustrated in Fig.  4) in 1000 
Genomes Browser sequence data. Two other sites dated 
back to the previous database release, dbSNP version 142 
(cg08261841 and cg09953122). The three remaining sites 
(cg02119982, cg16757724, and cg22484980), were adja-
cent to known SNP-containing positions, which would 
affect hybridization of the probes in the methylation 
assay. In addition to the validated sites, we identified six 
sites in YRI and 31 in CEU with reliability scores above 
0.50, which would be strong candidates as novel SNPs 
(Table 1).

In total, the program predicted 37 and 283 potential 
SNP positions (Table 1). The known SNP positions inter-
sected 9 and 57 positions that carried SNPs in these data-
sets (using dbSNP146). The remaining 28 positions in 
YRI and 226 sites in CEU also carried distinctive patterns 
that resembled SNPs. We examined these positions using 

a

b

Fig. 2  a MethylToSNP can be integrated in existing methylation array processing pipelines, where the source data can originate from remote 
data sources, such as GEO or local files. MethylToSNP requires already preprocessed data and will merge the SNP predictions with existing SNP 
annotations if available. This is why we recommend using it in conjunction with Bioconductor minfi package. b Schematic representation of the 
MethylToSNP workflow. Given a minfi object or a plain matrix, MethylToSNP will extract beta-values and will process one ‘cg’ probe at a time. For 
each probe, methylation values in different samples are clustered to find gaps between clusters with optional outlier exclusion (see “Methods”). 
The gaps are tested against the thresholds passed as the program’s parameters. Predicted SNPs are then reported along with the existing SNP 
annotation when available. Reliability scores are calculated to emphasize detection of patterns consistent with meC > T transitions
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MethylToSNP reliability scores (see “Methods”) and 
found that, except for the six sites in YRI and 31 in CEU, 
the majority scored below the threshold of 0.50, with a 
median score of just 0.02 for the YRI predictions and 0.01 
for the CEU predictions, suggesting that few of these sites 
would be viable meC > T SNP candidates.

To confirm that predictions with low reliability scores 
did not represent SNPs, we selected three of the 28 YRI 
results, which had three-tiered methylation patterns in 
15 of the 77 YRI samples. Reliability scores for the three 
examples were low (0.042, 0.034, and 0.070), and the 
majority of the data points occupied the lower portion 
of the beta-value range (representing unmethylated Cs). 
Through bisulfite sequencing we confirmed the presence 
of DNA methylation creating the three-tiered methyla-
tion levels, whereas targeted Sanger sequencing showed 
no polymorphisms (Table  2). Furthermore, only one 

sample had a SNP within 50  bp of the CpG of interest, 
whereas anything greater than 10 bp is reported unlikely 
to influence methylation levels [7, 8]. These results show 
that individual loci can display heterogeneous levels of 
DNA methylation that mimic a heterogeneous nucleo-
tide pattern in the Illumina methylation data, which can 
be filtered from potential meC > T SNP sites using the  
MethylToSNP reliability score. Notably, probe cg23886551 
is associated with a gene reported to be imprinted 
(TMEM121 [19]), whereas cg18335068 is associated with a 
gene that has at least one report of monoallelic expression 
(ZNF677 [20]).

Assessing novel polymorphisms in lesser characterized 
populations
MethylToSNP ( gap_ratio = 0.75, gap_sum_ratio = 0.5, 
no outlier removal) was applied to methylation array data 

Fig. 3  SNP presence distributes the methylation data into three tiers. All examples illustrated using 95 southern Africa samples. a DNA methylation 
beta-values at a single SNP site plotted across all samples. b Data from 40 randomly selected sites with SNP-like three-tier patterns plotted together 
across all samples to illustrate the need for variability in cutoff values used at each SNP position. c The same data as in (b) is shown separately for 
each array probe (i.e., genome locus). Probe-wise thresholds allow separation of data into three tiers
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generated from the epigenomes of individuals self-identi-
fying ethno-linguistically as KhoeSan or Bantu-speaking 
southern Africans, providing comparative populations. 
From 473,767 methylation probe sites on the Illumina 

450K arrays, we identified 2296 potential meC > T SNPs. 
Known SNPs in dbSNP146 accounted for 1402 of these 
sites (Table 3), giving a minimum estimated true positive 
rate of > 61%. The remaining 894 sites represent potential 
novel variants. Their median reliability score was 0.979, 
from which 827 sites had reliability scores ≥ 0.5. This 
result suggests a true positive rate of 2229/2296 or 97%, 
which is comparable to our sensitivity from simulated 
datasets (see “Methods”). Compared to the conventional 
approach of removing all ~ 144,000 known SNP sites 
overlapping the Illumina methylation array data [7], we 
note that removal of only 2296 potential SNPs prevents 
the loss of vast amount of data points from the south-
ern African epigenomic data. This finding emphasizes 
the need to filter data carefully for the presence of SNPs, 
but not to use overly conservative approaches that indis-
criminately remove all possible SNP positions, especially 
when including a population from Africa with known 
elevated levels of genetic diversity. Notably, many of 
these variants are newly identified, with 153 added since 
dbSNP142.

Differentially methylated sites between KhoeSan 
and Bantu southern Africans, filtered for SNPs
For a comparison of differential methylation between 
the KhoeSan and Bantu southern Africans (manuscript 

Fig. 4  Plot of beta-values at probe site cg21226234 in Yoruba in 
Ibadan, Nigeria (YRI) Illumina 27K samples detected by MethylToSNP. 
The site received a high reliability score of 0.958. The probe at this site 
corresponds to a known SNP rs775651175

Table 1  Variants predicted by applying MethylToSNP to the YRI and CEU HapMap methylation datasets

Default threshold values used
a  After filtering for known SNPs
b  Direct overlap of C in CpG position
c  After removing MethylToSNP

Set SNP 
predictions 
in dataset (#)

Overlap 
with dbSNP 
142 (#)

Overlap 
with dbSNP 
146 (#)

Potential 
novel SNPsa 
(#)

Total array 
sites removed 
by dbSNP 142 
filteringb,c (#)

Total array 
sites removed 
by dbSNP 146 
filteringb,c (#)

Median 
reliability scores 
of predicted SNPs

# novel SNPs 
with reliability 
scores  ≥ 0.5

YRI 37 3 9 28 3563 5677 0.01875 6

CEU 283 37 57 226 3329 5629 0.011 31

Table 2  Sequencing results of three sites in the YRI predictions

Probe of interest 
(genomic 
position)

MethylToSNP 
reliability score 
from 70 samples

Example genome Average methylation 
level from array data

Predicted 
genotype 
(bisulfite-treated)

Average methylation 
level from bisulfite 
sequencing

Sequenced 
genotype

cg06192753
chr19:13068298

0.042 NA19131 0.703 C/C 0.732 C/C

NA18506 0.440 C/T 0.435 C/C

NA18912 0.127 T/T 0.001 C/C

cg23886551
chr14:105992620

0.034 NA19172 0.830 C/C 0.913 C/C

NA18503 0.405 C/T 0.446 C/C

NA19222 0.113 T/T 0.020 C/C

cg18335068
chr19:53757911

0.070 NA18861 0.752 C/C 0.801 C/C

NA19161 0.510 C/T 0.500 C/C

NA18505 0.228 T/T 0.181 C/C
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under revision) we used MethylToSNP to identify and 
remove putative SNP-containing probes from the analy-
sis. Prior to complete SNP removal, we further investi-
gated one SNP prediction, at a position of a known SNP 
at Illumina methylation probe cg00117311. We predicted 
a SNP with a reliability score of 0.963, where two Khoe-
San individuals showed 50% methylation (beta-value), 
suggestive of a heterozygous allele pattern (Table 4). Four 
available genomic sequences from KhoeSan individuals 
confirmed our predictions of a polymorphism, by show-
ing that two individuals carry a C to T SNP [21], whereas 
the two others have only the reference allele (raw data 
available from Penn State Genome Browser [21, 22]). The 
latter two individuals showed ~ 95% methylation, indica-
tive of a homozygous allele, from the methylation data.

We examined four additional probe sites, which indi-
cated novel, but unproven SNP positions. We confirmed 
the presence of both common and rare variants by 
assessing several genomic sequences within 10 bp of the 
original CpG positions (Table  5). One site, cg10633981, 
represented the single unrecorded polymorphic site in 
our top 5% of differential methylation data. It has a reli-
ability score of 0.779 further suggesting suitability as a 

novel polymorphism. The polymorphism does not occur 
in the four sequenced KhoeSan genomes which are avail-
able, and thus we examined additional sequence data to 
check this position. However, the prediction was not con-
firmed at cg10633981 due to a lack of sequence data for 
the individual carrying the predicted variant.

Distinguishing differential DNA methylation or SNPs 
in enhancers and CTCF sites
To distinguish whether methylation was affecting 
enhancer regions, we identified a list of 102,559 CpG 
positions on the Illumina 450K array overlapping anno-
tated enhancers in the human genome. We narrowed the 
list to 1235 enhancer positions that overlap 12,613 differ-
entially methylated probe positions between the KhoeSan 
versus Bantu southern Africans (Mann–Whitney U test 
with a Bonferroni correction). Of these, 892/1235 or 72% 
overlapped positions known to contain SNPs in some 
population (using dbSNP146). By contrast, MethylToSNP 
predicted only six of the 1235 sites as carrying SNPs (all 
of which have reliability scores over 0.5), all recorded in 
the set of 892 known SNP positions, suggesting that the 
majority of these 892 positions are differentially methyl-
ated enhancers in the KhoeSan versus Bantu comparison, 
and not polymorphic sites in these individuals. Again, 
these data suggest that removing all known SNP sites 
from a methylation dataset could unnecessarily eliminate 
potentially informative data. We also applied Methyl-
ToSNP to the full set of 102,559 enhancer CpGs repre-
sented in methylation data from our KhoeSan and Bantu 
samples. MethylToSNP predicted 685 high confidence 
SNP positions (where reliability scores ≥ 0.5), of which 
327 sites overlap with known SNP sites in the human 
genome and occur in these samples. This approach also 
identifies 358 positions that could be novel SNPs that 
fall within enhancer positions in the KhoeSan or Bantu 

Table 3  MethylToSNP predictions in the southern African data set

a  After filtering for known SNPs
b  Direct overlap of C in CpG position
c  Manuscript under revision

Description Probes 
tested (#)

# SNP 
predictions 
in dataset

Overlap 
with dbSNP 
142 (#)

Overlap 
with dbSNP 
146 (#)

Potential 
novel SNPs 
(#)

Sites lost 
by filtering 
all dbSNP 
142 
positions 
(#)b

Sites lost 
by filtering 
all dbSNP 
146 
positions 
(#)b

Median 
reliability 
scores 
of predicted 
SNPs

# novel SNPs 
with reliability 
scores  ≥ 0.5

All probe sites 473,767 2296 1249 1402 894 101,558 144,569 0.979 827

Differential 
methylationc

12,613 23 19 19 4 2143 3081 0.395 2

Top 5% dif-
ferential 
methylationa,c

400 1 0 0 1 0 48 0.779 1

Table 4  Sequence data verifies the  presence of  a  SNP 
identified using MethylToSNP

Sequence data were obtained from the Penn State Genome Browser for four 
KhoeSan samples

Subject Methylation beta-
value at cg00117311

Putative 
alleles

Allele 
frequencies 
at rs78210031

KB1 0.458 CT 0.5 C/0.5 T

TK1 0.542 CT 0.5 C/0.5 T

NB1 0.954 CC C

MD8 0.949 CC C
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southern African data, although not identified as signifi-
cantly differentially methylated positions.

We also examined predicted SNPs versus DNA meth-
ylation at CTCF sites in the southern African, CEU, and 
YRI datasets. CTCF sites coincided with 79,856 CpG 
probe positions on the 450K array. Using MethylToSNP 
we narrowed the list to 3279 differentially methylated 
CTCF sites (Mann–Whitney U test with a Bonferroni 
correction) between the KhoeSan and Bantu groups and 
“confirmed that” they did not contain SNPs. These results 
implicate methylation differences rather than polymor-
phisms at the CTCF sites. When we examined CTCF 
sites without differential methylation, 101 were predicted 
by MethylToSNP to contain SNPs in the southern Afri-
can dataset (reliability scores ≥ 0.5). By contrast, only 
18 of the 79,856 CpG containing CTCF sites showed 
SNP whitespace patterns in the data from YRI individu-
als. These were ruled out as SNPs because they carried 
a median reliability score of 0.006, with none reaching a 
score threshold of 0.5. Thus, the patterns are implicated 
in variable methylation at these CTCF sites rather than 
polymorphisms. Likewise, in CEU individuals 61 CTCF 
positions resembled SNP patterns, but collectively had a 
median reliability score of 0.017, carrying no individual 
reliability scores > 0.5. Hence, the presence of novel SNPs 
and differential methylation in southern African data has 
the potential for a functionally relevant impact in genome 
biology, by interfering with CTCF binding, through dif-
ferent mechanisms. By contrast, in YRI and CEU sam-
ples, the CTCF sites appear to carry variable methylation 
but not polymorphisms. Thus, the MethylToSNP analy-
sis approach can inform SNP content in functional loca-
tions, a feature that provides value-added for samples 
that lack genotype information.

Comparison to gap hunting analysis
Another recently proposed method called “gap hunting” 
also uses array data to identify CpG sites at which differ-
ent methylation levels are present, by looking for gaps in 
data points [15]. The method can identify up to nine tiers 

of data, which result from different SNP signals, indels, 
and copy number variants. However, the authors do not 
make specific claims about what each type of pattern 
might represent, only cautioning that flagged sites should 
be considered separately in the methylation analysis. In 
order to compare the results to MethylToSNP, we focused 
on gap pattern labeled “3-groups” (consistent with two 
whitespace gaps). In a qualitative comparison of the 
tools using our datasets, we found that the list of flagged 
sites from each tool is not identical, and MethylToSNP’s 
list of problematic sites is more conservative (Table  6) 
when using default software parameters. For example, 
the gap hunting approach flagged 8486 positions com-
pared to 381 predicted by MethylToSNP. There are also 
cases where MethylToSNP identifies sites that do not fall 
neatly into the gap hunting category called 3-groups. The 
differences likely arise because of the fact that Methyl-
ToSNP focuses on finding one high confidence pattern 
(i.e., meC > T SNPs, while enforcing an extreme range 
of beta-values), whereas gap hunting generally looks for 
data patterns with a wide range of gap-space patterns, 
which may represent many different types of genomic 
events, including annotated SNPs, indels, microsatellites, 
or multi-nucleotide polymorphisms. These groups can 
cover small or large ranges of beta-values.

Discussion
Here we introduce the approach of MethylToSNP, which 
assesses methylation array data for the presence of poly-
morphic sites, which confound methylation analysis. 
Using a set of differentially methylated sites known to 
contain SNPs, we showed a true positive rate of at least 
96% (based on known CpG position SNPs). Addition-
ally, we identified several sites that may harbor previously 
uncharacterized SNPs or rare variants in two genetically 
understudied populations from southern Africa, as well 
as the more well characterized data from two well-char-
acterized HapMap populations. We also find evidence 
of sites with potential for parent-of-origin imprint-
ing. In short, MethylToSNP allows researchers to gain 

Table 5  Sequence data verifies the presence of SNPs identified using MethylToSNP

a  cg ID identifier from Illumina array annotations

cg IDa Chromosome CpG position (hg38) SNP coordinate 
within 10 bp

rs ID Information

cg00786635 chr1 25,267,710–25,267,711 25,267,707 rs145726224 Common in African populations 
including southern Africans

25,267,714 N/A Rare, found in one southern African

cg07482220 chr6 32,178,742–32,178,743 32,178,737 rs112124640 Rare, identified in 3 southern Africans

cg18976974 chr8 102,978,096–102,978,097 102,978,097 N/A Rare, only in one genome

cg10633981 chr11 16,758,221–16,758,222 N/A N/A No WGS data for genome of interest
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confidence in DNA methylation analysis results, while 
avoiding the twin problems of (a) confounding meC > T 
SNPs at target CpG sites and (b) needlessly eliminating 
large amounts of data by removing every methylation 
probe that has ever been associated with a polymorphic 
position in the genome, whether the SNP is present in 
the queried genomes or not.

MethylToSNP identified putative novel variants in YRI, 
CEU, and southern African genomes by using meth-
ylation data. Somewhat surprisingly, novel variants were 
predicted in the well-studied YRI and CEU samples, 
some of which were validated in a recent update to the 
dbSNP repository (dbSNP146). In other cases, although 
the tool initially identified potential SNPs, our reliability 
score correctly predicted that the sites harbored differ-
ential methylation and not polymorphisms. We verified 
this conclusion with methylation-based and nucleotide 
sequencing approaches. Other benefits of the approach 
include identifying differential methylation and variant 
occurrences in functional elements such as CTCF sites 
and enhancer regions when those CpGs appear on the 
methylation arrays.

Limitations of the study include situations where we 
predict novel variants, but have no genomic material 
to confirm their presence. This occurs in samples with 
minimal DNA collection amounts, such as the south-
ern African samples. We also caution that Methyl-
ToSNP will miss predictions of a SNP location if the C 
is always unmethylated, which will never appear as dif-
ferential methylation. In this case, there is no way to dis-
tinguish a bisulite converted C (becoming a T) “from” 
a polymorphic T in the genome. Therefore, we expect  
MethylToSNP will be less likely to detect polymorphisms 
in CpG island regions because they tend to be less meth-
ylated than non-CpG island locations (known as open 
sea locations). The majority of the locations found in 
the southern African data are in fact in open sea regions 
(1411 of 2296 calls across the whole array data set). In 
addition, other SNP-associated patterns besides the three 
tiers that MethylToSNP detects, will not be reported with 

this tool. In accordance with other published works [5–
10], there are genomic variants like indels and copy num-
ber polymorphisms that we will not identify. We suggest 
complementary approaches for such inquiries. Another 
limitation that we have addressed in “Methods” is the 
minimal number of samples required for reliable detec-
tion of SNP positions. Our benchmarks indicate that the 
recommended minimal number of samples is 50.

As the breadth and depth of population-level epig-
enomic projects increase, having an optimal approach for 
addressing the effect of variants on methylation data will 
become more important. Until such a time as genotyp-
ing and methylation analyses can be performed in con-
cert, as future sequencing technologies portend [23], 
MethylToSNP represents a viable approach for retaining 
as much methylation array data as possible while elimi-
nating sites associated with SNPs in a given population. 
Moreover, MethylToSNP can be used to identify novel 
SNPs in the vast collections of methylation data that 
already exist—including more than 800 projects using 
the Illumina Infinium 450K array, more than 160 projects 
using Illumina Infinium EPIC, and more than 320 pro-
jects using the Illumina 27 K array in GEO, which include 
thousands of samples. Additionally, MethylToSNP has 
the potential to reanalyze the full spectrum of these data 
with the more moderate approach of only removing SNPs 
that are detected in the individual genomes being exam-
ined. Finally, this method could be extended to include 
other potential SNP signatures as outlined by others [6, 
15] to create an even more comprehensive method.

Conclusions
We describe an approach, MethylToSNP, and predicted 
new SNPs residing in genomes for which DNA methyla-
tion data were collected. The identification of the SNP 
positions enables the user to remove data points from 
the methylation analysis that are CpGs confounded by 
SNPs, without removing all potential genomic posi-
tions recorded to harbor a SNP in any given popula-
tion. We used the tool to illustrate the detection of SNPs 

Table 6  Comparison of MethylToSNP calls and gap hunting calls

YRI Yoruba in Ibadan, Nigeria population, CEU CEU HapMap
a  Feature results found in gap hunting 3-group results
b  Feature results found in any of 9 gap hunting groups

Data set MethylToSNP 
predictions

Gap hunting 3-groups 
predictions

% Overlap in MethylToSNP 
with 3-groups predictions (%)a

% Overlap in MethylToSNP 
including all gap hunting 
groups (%)b

27K YRI and CEU 371 8486 47 100

27K CEU 283 8416 44 100

27K YRI 37 3409 73 97
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or differential methylation in functional regions of the 
genome, such as enhancers and CTCF binding sites, for 
which either event could have biological impact, but with 
distinctive underlying regulatory mechanisms.

Methods
MethylToSNP overview
MethylToSNP predicts the location of SNPs affect-
ing Illumina methylation array data. The program takes 
methylation array data for multiple samples (at least 50 
samples recommended) as an input and generates a list 
containing the locations of all potential SNPs in the data 
set. After a three-tier pattern is identified, postprocessing 
can be performed with annotation of probes and SNPs 
(mainly based on dbSNP database [18]) available in Bio-
conductor. For instance, sites can be filtered according 
to their location within the probe or directly on the CpG 
site or probes could be stratified as known or potentially 
novel SNPs. MethylToSNP was created in the R program-
ming language [24] as part of the R Bioconductor ecosys-
tem. The typical workflow is illustrated in Fig. 2a, where 
the input data may be originating from a remote (e.g., 
GEO) or local source in the format of raw array signal or 
already preprocessed methylation values. MethylToSNP 
will accept user input in the format of beta-values or, 
preferably, in the format generated by the BioConductor 
package minfi. The latter is preferred because the minfi 
data format incorporates genomic mapping and SNP 
annotation of array probes.

MethylSNP R package is available via GitHub https​://
githu​b.com/elnit​skila​b/Methy​lToSN​P.

Three‑tier pattern with gaps
To detect a position where methylation values are 
affected by a SNP either at the target CpG or its neigh-
boring position [5], the methylation data has to be dis-
cretely separated by two gaps of similar width, where 
these gaps contribute to the majority of the total data 
range (Fig.  3). The algorithm clusters methylation data 
into three clusters, favoring clusters located farther away 
from each other, and optionally disregards outliers, and 
then evaluates the gaps between clusters.

Because clustering of beta-values is a one-dimensional 
problem, and the number of clusters is low, it can be 
solved optimally with dynamic programming k-means 
implementation rather than with randomly initialized 
k-means algorithm that is not guaranteed to converge to 
an optimum. We relied on an implementation in R pack-
age Ckmeans.1d.dp [25].

Larger clusters will naturally have higher weight than 
clusters only consisting of a few data points. If untreated, 
this problem could lead to detection of multiple clus-
ters in highly populated data ranges (e.g., beta-values 

0.7–0.9). However, in fact, we are interested in detecting 
large and small clusters across the whole span of beta-
values. Therefore, we used weights inversely proportional 
to the number of samples, i.e., inverse quantile density. 
For quantile q and the number of samples Nq clustering 
weights were calculated as follows:

Additional file  1: Figure S3 illustrates the effect of 
inverse quantile weighting on the YRI beta-values at 
cg21226234 probe.

The gap between clusters can be defined as the differ-
ence in methylation levels between the bordering sam-
ples in each cluster, for instance gap between clusters A 
and B , where a and b are methylation values of bordering 
samples, such that ∀a ∈ A > ∀b ∈ B:

After gaps are identified, a subsequent method is used 
to assess the size of the data-free gaps at each methyla-
tion site using two adjustable cutoffs: the gap]sum_ratio 
value and the gap_ratio value. The gap_sum_ratio 
approach evaluates the total gap size by summing the size 
of the gaps and testing whether it represents a majority 
of the β-value range. By contrast, the gap_ratio approach 
compares sizes among the two largest gap regions and 
tests whether their relative sizes are roughly equivalent. 
To pass this threshold, the size of the smaller gap must 
be at least a certain percentage of the larger gap. For 
example, if the gap_ratio is set to 0.75, and the larger 
gap spans 0.3 β-value, the smaller gap must span at least 
0.225 β-value. For the algorithm to identify possible SNP 
locations, thresholds for both the gap_sum_ratio and the 
gap_ratio must be met. This method allows for variability 
in the methylation values, while still covering a majority 
of the whitespace, caused by compression of the β-value 
range away from upper or lower boundaries of 1.0 and 0, 
respectively. Additionally, we benefit by avoiding use of 
a fixed cutoff to separate methylation values into levels, 
such as thirds or quadrants. As shown in Fig. 3b, it is typ-
ically impossible to define fixed cutoffs that would work 
for all probes.

Considering the two gaps between three clusters 
H,M, L—“high”, “mid” and “low”: dH−M and dM−L , the 
threshold parameters gap_ratio and gap_sum_ratio for 
the algorithm are defined as:

and

wq =
1

Nq
.

dA−B = min
a

A−max
b

B.

min(dH−M, dM−L)

max(dH−M, dM−L)
≥ gap_ratio,

https://github.com/elnitskilab/MethylToSNP
https://github.com/elnitskilab/MethylToSNP
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where the denominator is the total range of beta-values 
across all three clusters.

Calibrating default MethylToSNP parameters
First, two simulated data sets were created to test the 
ability of MethylToSNP to identify SNP-associated meth-
ylation patterns when different proportions of samples 
(i.e., data points) were present at each tier level. The 
datasets included 95 samples each, to mimic the size of 
the southern African data set, and circa 10,000 probe 
loci. In both data sets, half of the probes corresponded 
to non-SNPs that were drawn from the actual southern 
African data. The second half of the probes represented 
SNPs and were generated in a different way depending 
on the set: in the “set-frequency” dataset unequal distri-
bution of methylation values across the tiers was gener-
ated, corresponding to low minor allele frequency (MAF) 
scenario, whereas in the “uniform-frequency” dataset 
the methylation values were distributed equally across 
the tiers, simulating the high MAF scenario, character-
istic for common SNPs. The procedure is described in 
more detail in Additional file  1, along with the set fre-
quencies and the code to reproduce the data. We used 
these simulated datasets to calibrate the default values 
of MethylToSNP parameters: the gap_sum_ratio and the 
gap_ratio . To choose the defaults ( gap_sum_ratio = 0.50 , 
gap_ratio = 0.75 ), the parameters were altered in 0.05 
increments (see Additional file 1: Figure S1). With these 
parameter thresholds, the benchmark returned 97% true 
positive rate on “set-frequency” dataset. The uniformly 
simulated data set returned 100% true positive rate. In all 
cases there were no false positives.

However, the simulated SNP probes had a clear separa-
tion between the tiers of methylation values, thus making 
it difficult to assess the performance in case of presence 
of noise or other confounding factors.

Therefore, we created a second benchmark to assess 
false negative rates using the 59 control SNP probes 
placed by array designers on the Illumina EPIC arrays. 
Also to demonstrate the use of the approach on the Illu-
mina EPIC we tested 152 pediatric samples from GEO 
GSE137682 dataset, where MethylToSNP with default 
parameters identified 41 out of 59 positions for 27% false 
negative rate (Additional file  1: Figure S2). However, 
we note that 18 control SNPs were A > G transitions or 
located further away than 2 bp from the CG position on 
the array, which we would not intend to find with our 
first pass approach. The remaining C > T and T > C (14 
and 15, respectively) and G > A (12 total) were correctly 
identified.

dH−M + dM−L

max(H ∪M ∪ L)−min(H ∪M ∪ L)
≥ gapsum_ratio,

The benchmark figures (Additional file  1: Figure S2A, 
B) showed that the gapratio value can be lowered from 
0.75 to 0.50 to retrieve more hits. However, the major 
hindrance to detection of gap patterns is the presence 
of noise or otherwise confounded measurements with 
methylation values between the tiers. In order to make 
the method insensitive to such measurements we imple-
mented an outlier detection option outliersd that is the 
measurement of the allowed within-cluster variance (in 
standard deviations). For instance, a sample with beta-
value β is an outlier in the cluster C with the cluster 
center µC and variance σ 2

C if the following threshold is 
not satisfied:

In case when the outlier filtering option is enabled, 
any beta-value that belongs to a cluster but does not 
match the threshold would be excluded from the calcula-
tion of gaps between clusters. An additional benchmark 
run with outlier filtering enabled (Additional file  1: Fig-
ure S2D, E) showed that this option completely rescued 
retrieval, with zero false negatives, even in complicated 
cases.

We encourage users to use our benchmarks as a guid-
ance for changing the default parameter values. Alter-
natively, users can recalibrate the thresholds using their 
own predefined control probes, for instance known 
SNPs, or simulated datasets.

Size of the dataset required for the analysis
The algorithm relies on identification of three clusters, 
therefore the absolute minimum number of samples 
required for the analysis is three. However, the SNP pat-
terns may only be detectable with larger datasets, par-
ticularly for the rare alleles. While the low MAF SNPs 
will set the upper detection boundary, we wanted to cali-
brate the lower boundary, i.e., the minimal recommended 
number of samples for the analysis based on common 
SNPs with MAF close to 0.50. We used the false negative 
detection rate of SNP control probes for the 152 pediatric 
samples from GEO GSE137682 dataset as a benchmark 
(Additional file 1: Figure S2C). The plot shows how many 
true SNP probes are retrieved in case of subsampling 
without replacement from 5 to 150 data points out of 
152, with a step of 5, with 30 replicates. The saturation is 
reached at about 50 samples (i.e., data points). Removal 
of outliers improves the overall retrieval; however, it does 
not affect the lowest boundary on the number of samples 
required to find the three-tier methylation pattern (Addi-
tional file  1: Figure S2F). Based on this benchmark we, 
therefore, recommend that the size of the datasets ana-
lyzed with MethylToSNP should not be smaller than 50 

β − µC

σC
≤ outliersd.
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samples. The program will run with 3 or more samples 
but will print a warning message if supplied data is insuf-
ficient for reliable detection of SNPs.

SNP‑reliability score and thresholds
MethylToSNP quantitatively assesses how close the 
observed methylation pattern resembles the expected 
meC > T SNP by providing a reliability score. In general, 
the majority of sites that MethylToSNP identifies are 
meC > T SNPs, or neighboring sites affecting the probe. 
In these cases, C is the major allele and is consistently 
methylated. When replaced by a T allele, a false signal of 
differential methylation appears. By contrast, an unmeth-
ylated C major allele will give the same methylation value 
as a T allele. The reliability score R represents a weighted 
measure based on the appearance of the data points for 
a given probe in the three β-value tiers, defined as “high” 
(> 0.75), “low” (< 0.25) and “middle” (between 0.25 and 
0.75), with number of samples in each tier represented as 
NH,NL,NM , respectively:

If methylation values are falling in fewer than three 
tiers the reliability score of 0 is assigned.

We apply this stringent scoring approach to refine our 
datasets to those spanning the largest beta-value range, 
i.e., at the target CpG or the second position, as these 
locations have the greatest potential to impact the p val-
ues calculated for differential methylation between com-
parison groups.

To assess the reliability threshold necessary for calling 
SNP positions affecting the methylation interpretation, 
we calculated the scores for the simulated benchmark 
with two generated datasets (see Additional file  1). For 
the dataset with predetermined ratios of data points at 
each tier (which includes SNPs with low MAF) the mean 
reliability score was 0.568, whereas for SNPs with uniform 
distribution of methylation across tiers (corresponding 
to high MAF) mean reliability was 0.501 (Table  7). We 
assigned the threshold of 0.50 to reliability scores, with 
approximately 75% of all examples in the more realis-
tic set-frequency dataset passing the threshold. When 
the data points are distributed mainly between the top 
two levels, this approach creates a theoretical reliability 
score of 0.75, whereas 0.50 is the expected value when 
all samples are evenly distributed across all three levels. 
Therefore, a higher reliability score represents a greater 
likelihood of the target site harboring an uncharacterized 

R =
1

NH + NM + NL

(

NH +
NM

2

)

θ(NH)θ(NM)θ(NL),

θ(n) =

{

0 : n = 0
1

.

C to T SNP, consistent with a low-frequency T polymor-
phism being present and a higher concentration of sam-
ples falling within the top two tiers.

YRI HapMap dataset
We next tested MethylToSNP on data from YRI Hap-
Map samples, some of which have both methylation 
and genotype data available. Methylation data were 
downloaded from Gene Expression Omnibus (GEO) 
project GSE26133 [16] for 77 samples and correspond-
ing genotype data for available samples were found in 
the 1000 Genomes Browser (https​://www.ncbi.nlm.nih.
gov/varia​tion/tools​/1000g​enome​s) [26]. One caveat with 
the browser data is that there were not genotype data at 
some methylation sites of interest for the samples which 
appeared polymorphic. For targeted sequencing, DNA 
samples were ordered from the Coriell depository and 
Sanger sequenced. The same samples were also subjected 
to targeted bisulfite sequencing to verify the methylation 
levels observed from the Illumina 450K methylation chip 
analysis.

CEU HapMap dataset
Another group of well-studied samples, from individu-
als that likely have a very different epigenetic profile and 
genetic and life history from the individuals who contrib-
uted to the YRI (i.e., Yoruba in Ibadan, Nigeria) datasets, 
the CEU HapMap dataset, includes data from 90 Utah 
residents with Northern and Western European ances-
try. Illumina 27K methylation data from the CEU sample 
set (from GEO project GSE27146 [17]) were subjected to 
MethylToSNP analysis.

Southern African data analysis
To test MethylToSNP on primary samples, we used 
an in-house methylation dataset acquired from whole 
blood collected from peoples ethno-linguistically self-
identifying as either KhoeSan or Bantu of Namibia, as 
in [27]. Few genomic data exist for these populations; 
less than ten genomes have been fully sequenced to 
date [21]. These populations harbor the greatest amount 
of genomic diversity, specifically the earliest diverged 
human lineage represented by people of KhoeSan ances-
try [21], and population-specific SNPs are recorded in 
dbSNP. Nevertheless, many unidentified SNPs in this 

Table 7  Reliability scores from the simulated data sets

Data set Mean reliability 
score

Median 
reliability score

Set frequency 0.568 0.553

Uniform frequency 0.501 0.500

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
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group may affect the interpretation of methylation stud-
ies—and MethylToSNP may detect them. Also, previ-
ously identified polymorphisms may not be present in 
the samples used in this study. The sample set contained 
95 samples, 40 were KhoeSan, 51 were non-KhoeSan or 
Bantu-speaking southern Africans, and six were geo-
graphically matched Namibians of European descent, 
with two of the European controls run in duplicate for 
comparison. All samples were run on the Illumina 450K 
methylation chip (manuscript in preparation). The Khoe-
San and control data were used to find sites that were 
differentially methylated between these two groups. This 
data set is broken down into three subsets for analysis: 
(i) all quality controlled methylation data from the chip 
(473,767 sites), (ii) all sites that are differentially meth-
ylated between the KhoeSan group and control group 
based on Mann–Whitney U tests (p ≤ 0.05) with Bonfer-
roni test correction (q ≤ 0.05; 12,631 sites), (iii) the top 
5% of differential methylation sites, ranked by largest 
magnitude of absolute difference, which are also statisti-
cally significant with Mann–Whitney U tests (p ≤ 0.05) 
and Bonferroni test correction (q ≤ 0.05), where known 
SNP positions are removed (400 sites).

Regions of particular interest: CTCF sites and enhancers 
elements
We took an in-depth look at enhancer and CTCF sites 
implicated in differential methylation, where potential 
novel SNP content could confound methylation analy-
sis. For example, a finding of differential methylation in 
a CTCF site could inhibit CTCF binding [28], as dem-
onstrated at imprint control regions, such as IGF2 and 
H19, where allele-specific methylation [29] inhibits bind-
ing. A SNP could also inhibit CTCF binding and present 
as differential methylation, impeding correct biologi-
cal interpretation. Using the southern African dataset, 
we investigated how many differential methylation sites 
address these alternatives. The CTCF site locations were 
downloaded from the University of California, Santa 
Cruz Genome Browser [22, 30]. Likewise, sites of differ-
ential methylation that overlap known enhancer regions 
were intersected with our data to determine whether 
enhancer function could be impacted by the presence of 
SNPs or differential methylation. Enhancer site locations 
were downloaded with the Illumina 450K array annota-
tion file and were originally compiled by Illumina from 
ENCODE projects. In order to maintain consistency of 
annotations in CTCF site analysis, we also downloaded 
a 450K array dataset (GEO GSE39672) for YRI and CEU 
HapMap samples.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1307​2-019-0321-6.
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