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METHODOLOGY

Accurate ethnicity prediction from placental 
DNA methylation data
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Abstract 

Background:  The influence of genetics on variation in DNA methylation (DNAme) is well documented. Yet con-
founding from population stratification is often unaccounted for in DNAme association studies. Existing approaches 
to address confounding by population stratification using DNAme data may not generalize to populations or tissues 
outside those in which they were developed. To aid future placental DNAme studies in assessing population stratifica-
tion, we developed an ethnicity classifier, PlaNET (Placental DNAme Elastic Net Ethnicity Tool), using five cohorts with 
Infinium Human Methylation 450k BeadChip array (HM450k) data from placental samples that is also compatible with 
the newer EPIC platform.

Results:  Data from 509 placental samples were used to develop PlaNET and show that it accurately predicts (accu-
racy = 0.938, kappa = 0.823) major classes of self-reported ethnicity/race (African: n = 58, Asian: n = 53, Caucasian: 
n = 389), and produces ethnicity probabilities that are highly correlated with genetic ancestry inferred from genome-
wide SNP arrays (> 2.5 million SNP) and ancestry informative markers (n = 50 SNPs). PlaNET’s ethnicity classifica-
tion relies on 1860 HM450K microarray sites, and over half of these were linked to nearby genetic polymorphisms 
(n = 955). Our placental-optimized method outperforms existing approaches in assessing population stratification in 
placental samples from individuals of Asian, African, and Caucasian ethnicities.

Conclusion:  PlaNET provides an improved approach to address population stratification in placental DNAme 
association studies. The method can be applied to predict ethnicity as a discrete or continuous variable and will be 
especially useful when self-reported ethnicity information is missing and genotyping markers are unavailable.

Keywords:  Epigenetics, DNA methylation, Microarray, Placenta, Population stratification, Machine learning, 
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Introduction
Epigenome-wide association studies (EWAS) have shown 
that a substantial amount of variation in DNA meth-
ylation (DNAme) exists between human populations 
[1–7]. Therefore, if left unaccounted for, population-
associated variation can interfere with the discovery 
of DNAme alterations associated with disease or envi-
ronment. This type of confounding, often referred to as 
population stratification, can be addressed by inferring 

population-associated variation directly from DNAme 
data itself [8–10], as is done in genome-wide association 
studies (GWAS) [11]. However, unlike genetic markers, 
epigenetic markers are tissue-specific and, therefore, a 
DNAme-based method developed in a specific tissue or 
population may not generalize well to other tissues with 
unique DNAme profiles.

In EWAS, confounding from population stratification 
is most often addressed using self-reported ethnicity/race 
to stratify study samples across the phenotype of inter-
est. But, defining ethnicity/race is a complex task requir-
ing the interpretation of a combination of biological and 
social factors leading to several complications: (i) incon-
sistent definition of ethnicity/race categories between 
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individuals/organizations [12, 13]; (ii) self-reporting 
more than one ethnicity/race [14]; and (iii) missing eth-
nicity information altogether. To overcome the limita-
tions of ethnicity/race categories, genetically defined 
ancestry can be used [15] as an alternative measure of 
population-specific variation. In contrast to the discrete 
nature of ethnicity/race categories, genetic ancestry can 
be expressed as several continuous variables that reflect 
ancestry composition [16].

Though the use of genetic ancestry could help to bet-
ter design EWAS, genotyping markers might not be col-
lected in DNAme studies. In cases where self-reported 
ethnicity and genetic ancestry information are unavail-
able, methods have been developed to infer this infor-
mation directly from DNAme (Table  1) measured on 
the popular Infinium Human Methylation 450k Bead-
chip array (HM450K) [8–10, 17]. Barfield et  al. [8] and 
EPISTRU​CTU​RE [9] methods both utilize principal 
components analysis (PCA) on select DNAme sites to 
infer genetic ancestry. Since only DNAme sites that are 
associated with nearby genetic variation are used, these 
methods produce principal components (PCs) that are 
often highly correlated with genome-wide genetic varia-
tion [8, 9] and, therefore, can be used as a measurement 
of genetic ancestry. Zhou et al. [10] explored using the set 
of 65 SNPs measured on HM450K to produce ethnicity/
race classifications. However, it has not been investigated 
whether these methods perform well in populations and 
tissues other than the ones they were developed and 
tested in (Table 1).

DNAme studies using placental tissue are of particu-
lar interest because the functioning of the placenta is 
essential to a healthy pregnancy [18, 19]. Although many 
DNAme alterations associated with placental-mediated 
diseases have been identified [20–23], the incidence of 

many of these conditions vary by population [24–26]. 
In this study we developed PlaNET (Placental DNAme 
Elastic Net Ethnicity Tool), an ethnicity classifier, using 
DNAme and genotyping data measured on the HM450K 
array in multiple cohorts of placentas from North 
America. PlaNET was developed on overlapping sites 
from HM450K and the newer Illumina MethylationE-
PIC BeadChip array (EPIC) to ensure compatibility with 
future studies. We show that PlaNET out-performs exist-
ing methods in predicting ethnicity in placental tissue 
and can produce accurate measures of genetic ancestry. 
Importantly, our method can be used to classify indi-
viduals into discrete ancestral populations (i.e., African, 
Asian, and Caucasian) or to describe individuals on an 
ancestral continuum that may more accurately reflect the 
nature of modern human populations. In studies where 
ethnicity information is unavailable, PlaNET can be 
applied to predict ethnicity after obtaining DNAme data, 
and used to investigate population-specific differences or 
to minimize confounding by population stratification in 
statistical analyses.

Results
Datasets
Our goal was to develop a placental DNAme-based eth-
nicity classifier, which could learn ethnicity-specific 
DNAme patterns from one set of samples to assign eth-
nicity labels to a new set of samples. We searched for pla-
cental HM450K data on the Gene Expression Omnibus 
[27] that contained more than one ethnicity group and 
made sample-specific ethnicity information available 
(Table 2). Five distinct cohorts met these criteria (labeled 
C1–C5), with three major North American ethnicities 
represented by sufficiently large numbers across more 
than one dataset: African (n = 58), Asian (n = 53), and 

Table 1  Description of methods to infer self-reported ethnicity or genetic ancestry using HM450K data

a  Ethnicity/ancestry as defined in associated study

Name of method Statistical approach Input HM450K sites Output Sample characteristics

Tissue Populationsa Cohort location

Barfield et al. [8] PCA 7703 DNAme sites 
with a 1000 
genomes project 
SNP at the CpG site

Genetic ancestry as PC 
scores

Blood Caucasian-Americans, 
African–Americans

USA

EPISTRU​CTU​RE [9] PCA 4913 DNAme sites 
associated with local 
genetic variation 
(mQTLs)

Genetic ancestry as PC 
scores

Blood Europeans, Puerto 
Ricans, Mexicans

Southern Germany; 
USA

Zhou et al. [10] Predictive-modeling 59/65 SNP sites Ethnicity Multiple White, Black or African 
American, Asian

Many

PlaNET; this study Predictive-modeling 15 SNPs; 1845 DNAme 
sites

Ethnicity and genetic 
ancestry

Placenta Caucasians, Asians, 
Africans

Canada, USA
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Caucasian (n = 389). We opted to include samples from 
both healthy and abnormal pregnancies (preeclampsia, 
gestational diabetes mellitus, fetal growth restriction or 
overgrowth) (Table  2) [21, 28–33]. Though there were 
significant cohort-specific effects on DNAme that may 
reflect batch/technical variation (Additional file  2: Fig-
ure S1), we included these multiple datasets and pheno-
types to enable the development of a robust classifier that 
would generalize well in future studies [34].

Development of a placental DNA methylation ethnicity 
classifier
To determine the best machine learning classification 
algorithm that could learn ethnicity-specific patterns 
from DNAme microarray data, we compared four algo-
rithms previously shown to be well-suited for predic-
tion using high-dimensional genomics data [34–36]: 
generalized logistic regression with an elastic net pen-
alty (GLMNET) [37, 38], nearest shrunken centroids 
(NSC) [35], k-nearest neighbours (KNN) [39], and sup-
port vector machines (SVM) [40]. For each algorithm, 
hyperparameter(s) were selected (e.g. k number of 
neighbors for KNN) that resulted in the highest per-
formance estimated by repeated fivefold cross valida-
tion (three repeats). All algorithms performed favorably 
(logLoss  =  0.170–0.276; Additional file  2: Figure S2a), 
except KNN (logLoss  =  1.82). However, all algorithms 
showed a bias for high predictability of Caucasians (aver-
age accuracy =  0.980), and low predictability of Asians 
(average accuracy = 0.448) (Additional file 2: Figure S2b). 
Considering overall- and ethnicity-specific performance, 
the GLMNET algorithm was used for the remainder of 
the study (accuracy =  0.866, 0.625, 0.998 for Africans, 
Asians, and Caucasians, respectively), and we refer to this 

classifier as PlaNET (Placental DNAme Elastic Net Eth-
nicity Tool).

For each sample, PlaNET returns a probability that the 
sample is African, Asian or Caucasian, and the final clas-
sification is defined by the ethnicity class with the highest 
of these probabilities. We reason that these probabilities 
have the potential to identify samples with mixed ances-
try or ethnicity. Therefore, we implemented a threshold 
function on PlaNET’s probability outputs that classifies 
samples as ‘Ambiguous’ if the highest of the three class-
specific probabilities is below 0.75 (“Methods”, Additional 
file 2: Figure S3). This resulted in 7 self-reported African, 
12 Asian, and 13 Caucasian samples as being classified 
as ambiguous, which led to a slight decrease in perfor-
mance (Fig.  1a). However, we note that because genetic 
ancestry is on a continuum and due to the limitations of 
self-reported ethnicity, there are likely to be individuals 
of mixed ancestry/ethnicity in our sample set and, there-
fore, hypothesize that a model that includes an ambigu-
ous class is more realistic and accurate than one without. 
Cross validation, where training/validation subsets were 
created based on cohort-identity, yielded an overall accu-
racy of 0.900, a Kappa of 0.738, and a positive predictive 
value of 0.944 (Fig. 1a), which was consistent when exam-
ining performance by dataset (Additional file  2: Figure 
S4).

Ethnicity‑predictive sites on the HM450K array are largely 
linked to genetic variation
To better understand the basis of PlaNET’s ethnicity pre-
diction, we examined the 1860 sites (Additional file  1: 
Table S1) automatically selected by the GLMNET model. 
These sites were enriched for SNP probes, containing 15 
of the 59 SNPs explicitly measured on both HM450K and 

Table 2  Description of HM450K DNAme datasets used to develop and test PlaNET

AFR African, ASI Asian, CAU​ Caucasian

Cohort (n) GEO accession Dataset summary Location Self-reported ethnicity Non-HM450K 
genetic data (n)

AFR (n = 57) ASI (n = 53) CAU (n = 389)

C1 (72) GSE70453 36 controls, 36 ges-
tational diabetes 
mellitus

Boston, MA, USA 13 13 46 N/A

C2 (24) GSE73375 13 controls, 11 
preeclampsia (PE)

Chapel Hill, NC, USA 13 1 10 N/A

C3 (289) GSE75248 289 samples from 
infants with 
variable newborn 
neurobehavior

RI, USA; MA, USA 23 9 257 N/A

C4 (44) GSE100197 17 controls, 27 PE Toronto, CAN 7 12 25 50 AIMs (41)

C5 (70) GSE100197, 
GSE108567, 
GSE74738, unpub-
lished

35 controls, 35 fetal 
growth restriction, 
PE, and/or preterm 
birth

Vancouver, CAN 1 18 51 50 AIMs (67); Omni2.5 
(27)
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EPIC DNAme arrays (p < 1e−16). Of the remaining 1845 
DNAme sites, we found significant enrichment for sites 
linked to genetic variation: 802 sites (43.1%) have a docu-
mented SNP in either the probe body, CpG site of inter-
rogation, or the single base extension site (p  <  1e−16) 
[41], and 220 sites (11.8%) corresponded to previously 
identified placental-specific methylation quantitative 
trait loci (mQTLs) [42] (p < 1e−16, Fig. 1b). With respect 
to chromosomal location, we found significant enrich-
ment for ethnicity-predictive sites on chromosomes 
2 (p < 0.01), 15 (p < 0.05), and 17 (p < 0.05) (Additional 
file 2: Figure S5a). With respect to CpG density, we found 
significant enrichment for ethnicity-predictive sites in 
OpenSea (p < 0.001) and South Shore (p < 0.05) regions 
(Additional file  2: Figure S5b), where relatively neutral 
(unselected) genetic variation is more likely to be located 
[43]. Pathway analysis for GO and KEGG terms for genes 
associated with the 1860 sites, found only one significant 
(p < 0.05) GO term (homophilic cell adhesion via plasma 
membrane adhesion molecules).

DNAme ‑inferred ethnicity and genetic ancestry
To test the ability of PlaNET to identify individu-
als of mixed ancestry, we examined whether sam-
ples classified as ‘ambiguous’ were also intermediate 
with respect to genetically defined ancestry. Genetic 
ancestry was inferred from 50 ancestry informative 
genotyping markers (AIMs) in samples from cohorts 
C4 and C5 (n  =  109), using 1000 Genomes Project 

samples as reference populations [44, 45]. These 50 
markers were previously selected based on their abil-
ity to differentiate between African, European, East 
Asian, and South Asian populations [45]. Plotting the 
first two multi-dimensional scaling coordinates calcu-
lated on the 50 AIMs in (Fig.  2), shows a handful of 
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Fig. 1  Evaluating PlaNET’s performance and characterizing ethnicity-predictive HM450K sites. We developed PlaNET (Placental elastic net ethnicity 
classifier), using placental HM450K data and evaluated its classification performance using leave-one-dataset-out cross validation. a Each sample’s 
ethnicity classification from PlaNET is shown with respect to their self-reported ethnicity. Samples were called ‘ambiguous’ if their predicted 
probability fell below a ‘confidence’ threshold of 75%. b PlaNET utilizes a subset of ethnicity-predictive sites from the HM450K. To investigate 
whether genetic signal is present in the measurement for these sites, we cross-referenced ethnicity-predictive sites to an existing placental mQTL 
database [42] and determined whether any sites had SNPs present in either the probe body, CpG site of interrogation, or single base extension sites, 
based on dbSNP137
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samples intermediate to three more distinct ancestry 
clusters. The samples with less extreme genetic ances-
try coordinates based on AIMs tended to have lower 
PlaNET-calculated probabilities associated with the 
ethnicity classification matching the individual’s self-
reported ethnicity (Fig.  2), confirming that PlaNET 
provides some information on the genetic ancestry 
composition.

Although genetic ancestry can be adequately inferred 
from a small set of AIMs, it is best obtained from a 
large number of unlinked markers [46]. Therefore, we 
also inferred genetic ancestry in a smaller number of 
samples from C5 (n = 37) with high-density genotyp-
ing array data (Omni 2.5, >  2.5 million SNPs), again 
using 1000 Genomes Project samples as reference pop-
ulations [44, 47, 48], and compared this to PlaNET’s 
predicted membership probabilities for each ethnicity 
(Fig.  3a–c). 10 of these 37 samples were not initially 
used for previous analyses due to a lack of available 
self-reported ethnicity information (Fig. 3a). We found 
that genetic ancestry coefficients reflected the prob-
abilities associated with ethnicity classification to a 
high degree (Fig. 3b, c, R2 = 0.95–0.96, p < 0.001).

Characterizing existing methods to infer population 
structure in placental DNA methylation data
To evaluate our hypothesis that a placental-specific 
approach to population inference would outperform 
existing methods developed in other tissues, we com-
pared the performance of PlaNET to three previously 
published HM450K methods: Barfield’s SNP-based filter-
ing approach [8], EPISTRU​CTU​RE [9], and Zhou’s SNP-
based classifier [10]. To address the differences in the 
type of outcomes produced by each method (e.g. PCs or 
ethnicity classifications), we used PCA to generate met-
rics that could be compared between methods. PCA was 
performed on the set of HM450K sites corresponding to 
each method (Table  1), which were then included in a 
series of simple linear models, where each PC was either 
a function of self-reported ethnicity (Fig.  4a; n  =  499, 
cohorts C1–C5), genetic ancestry (Fig.  4b; n  =  109, 
cohorts C4 and C5 only), or cohort-specific patient vari-
ables (e.g. microarray batch, sex, gestational age; Addi-
tional file 2: Figure S6). Linear models were constructed 
for each of the top ten PCs and R2 for each linear model 
was compared between each method. For computa-
tion of PCs on PlaNET’s sites, we used a cohort-specific 
cross validation framework to account for bias that could 
be introduced using the same samples for development 
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Fig. 3  Probabilities associated with PlaNET ethnicity predictions and genetic ancestry inferred from high-density genotyping data. PlaNET was 
tested in a subset of cohort C5 (n = 37). a PlaNET’s ethnicity classifications were compared with self-reported ethnicity. b Ethnicity probabilities 
generated by PlaNET were compared to c genetic ancestry coefficients determined from high-density genotyping data (Omni 2.5, > 2 million SNPs), 
using the function snmf() from the R package LEA, and found to be highly correlated (R2 = 0.95–0.96, p < 0.001) determined by linear regression
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and testing. Specifically, PlaNET’s PCs were computed 
separately for each cohort using ethnicity-predictive sites 
selected in all other cohorts (“Methods”).

We found that for all cohorts, the first two PCs 
computed on PlaNET’s sites and the 59 SNPs were 
highly correlated with self-reported ethnicity (Fig.  4a, 
R2  =  0.649  ±  0.087, 0.697  ±  0.110, respectively) 
and genetic ancestry (Fig.  4b, R2  =  0.555  ±  0.246, 
0.487  ±  0.335). In contrast, the first PC computed on 
Barfield’s and EPISTRU​CTU​RE’s sites showed almost 
no correlation with self-reported ethnicity (Fig.  4a, 
R2  =  0.0452  ±  0.060, 0.066  ±  0.082, respectively), 
or genetic ancestry (Fig.  4b, R2  =  0.0435  ±  0.0548, 
0.104 ± 0.0653). Instead, for Barfield and EPISTRU​CTU​

RE, the PCs that correlated with ethnicity/ancestry were 
confined to PCs 3–6 (Fig. 4a, b), while often the top PCs 
(e.g., 1–4) for these two methods were associated with 
variables other than ethnicity/ancestry (Additional file 2: 
Figure S6). For example, in cohort C4, EPISTRU​CTU​
RE PC1 was most correlated with row position on the 
HM450K array (R2  =  0.482), PC2 with gestational age 
(R2  =  0.315), PC3 with genetic ancestry coordinate 1 
(R2 = 0.450), and PC5 with ethnicity (R2 = 0.579; Addi-
tional file 2: Figure S6).

Limiting to methods that predict ethnicity classes, we 
compared the performance of PlaNET to Zhou et al. [73] 
SNP-based classifier (Additional file  2: Figure S7). Both 
classifiers demonstrated similar accuracy in classifying 
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self-reported Africans (p  =  0.68, 87.1% for PlaNET; 
90.3% for Zhou) and Caucasians (p =  0.062, 96.7% vs. 
97.9%), but PlaNET was more accurate in classifying self-
reported Asians (p = 0.00052, 74.4% vs. 41.0%).

Application of PlaNET in an EWAS setting
Lastly, to demonstrate the utility of applying PlaNET to 
placental DNAme data, we applied PlaNET to obtain 
ethnicity classifications across two previously published 
EWAS studies using three datasets (Table  3, Additional 
file 2: Figure S9). We note that this includes samples from 
cohorts C4 and C5 that were used to develop PlaNET.

One study used two distinct cohorts from Vancouver, 
Canada (GSE100197, n  =  102) and Toronto, Canada 
(GSE98224, n  =  48) to investigate placental DNAme 
alterations associated with preeclampsia status [21]. We 
reasoned that correction for ethnicity should decrease 
false positives in the EWAS and, therefore, increase con-
cordance between hits identified in the two data sets. 
In the original EWAS, with no adjustment for ethnic-
ity, our group reported that 599 out of the 1703 (35.1%) 
significant associations found in the Vancouver cohort 
were also significant in the Toronto cohort, and the cor-
relation of the difference in mean DNAme between 
controls and preeclampsia-affected samples (i.e. delta 
betas) at FDR significant sites between discovery and 
validation was 0.62 [21]. When we repeated the analy-
sis while adjusting for ethnicity determined by PlaNET, 
the number of preeclampsia-associated sites that over-
lapped between cohorts increased to 651/1614 (40.3%) 
(Additional file 1: Table S5), and the correlation between 

delta betas increased to 0.66. We also found that repeat-
ing gene set enrichment analysis, which originally found 
nothing significant [21], yielded several significantly 
enriched (FDR < 0.05) GO terms such as developmental 
process, inflammatory response, and cell adhesion (Addi-
tional file  1: Table  S6). Lastly, we also adjusted for eth-
nicity determined by Zhou et  al.’s SNP classifier, which 
resulted in a smaller increase in overlapping associations 
and correlation between delta betas (607/1662 = 36.52%, 
correlation =  0.65). However, no GO terms were found 
significant at an FDR < 0.05. In summary, any adjustment 
for ethnicity improved the replicability of our preeclamp-
sia EWAS results, with PlaNET performing best when 
used in placental samples.

Next, because adjustment for population stratification 
can not only be done via correction in linear modeling, 
but can also be done by stratifying an analysis by popu-
lation identity, we performed a secondary EWAS con-
fined to samples predicted as Caucasians (n  =  71/102 
for discovery, n  =  28/48 for validation). This resulted 
in a decrease in overlap in preeclampsia-associated 
sites between cohorts: 359/1488 (17%) (Additional 
file  1: Table  S7), although the correlation between delta 
betas remained high (r =  0.67), indicating the observed 
decrease in overlap between significantly differentially 
methylated sites was likely due to a decrease in power 
from smaller sample size (particularly in the validation 
group) rather than a decrease in concordance between 
cohorts.

PlaNET can be useful for checking for discrepancies in 
self-reported ethnicity information. We tested whether 
PlaNET could identify the ethnicity of samples from an 
all-Caucasian population. GSE71678 (n = 343), a cohort 
not used in the development of PlaNET, consisted of 
DNAme data from placental samples collected from a 
New Hampshire, USA birth cohort that investigated the 
effects of arsenic exposure on placental DNAme [49]. 
PlaNET-determined 342 samples were classified as Cau-
casian, and 1 sample had a high probability of belong-
ing to the Caucasian group (Probability = 0.73) but was 
below our confidence threshold and was, therefore, clas-
sified as ‘ambiguous’, confirming ethnic homogeneity was 
high in this cohort and adjustment for population stratifi-
cation was not needed in this study.

Discussion
In this study, we developed PlaNET, a method to pre-
dict Asian, African, and Caucasian ethnicity using pla-
cental HM450K array data. To enable compatibility 
with future studies, PlaNET was developed on sites 
(452,453 CpGs and 59 SNPs) overlapping between the 
older  HM450K and  the newer EPIC Illumina DNAme 
arrays. Although all samples in this study were reported 

Table 3  Distribution of  PlaNET ethnicity predictions 
across previously published placental EWAS datasets

EOPET early onset preeclampsia, LOPET late onset preeclampsia
a  Phenotype of interest is a continuous variable (arsenic concentration)

GEO 
accession

Primary 
groups

African Asian Caucasian Ambiguous

GSE98224 EOPET 5 4 10 0

Preterm 
controls

1 3 5 0

LOPET 1 1 8 1

Term con-
trols

0 4 5 0

GSE100197 EOPET 1 5 15 1

Preterm 
controls

1 4 19 0

LOPET 0 6 12 0

Term con-
trols

0 2 17 0

IUGR​ 0 3 8 0

GSE71678 NAa 0 0 342 1
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as a single ethnicity/race, we expected that there would 
be significant population substructure that might limit 
our ability to develop predictive models of ethnicity and 
to assess their performance. Despite this limitation, eth-
nicity could be predicted with high accuracy as assessed 
by cross validation. PlaNET’s DNAme-based ethnicity 
classification relies on HM450K sites with large amounts 
of genetic signal, which supported our initial efforts to fil-
ter our data to enrich for genetic-informative sites prior 
to classifier development (“Methods”) [41, 50, 51]. When 
examining PlaNET’s 1860 sites used to predict ethnicity, 
more than half could be linked to a nearby genetic poly-
morphism. Of these, 802 CpG sites have documented 
SNPs in their probe body, single base extension or CpG 
site of interrogation, which previously have been identi-
fied to differ between European and East Asian popula-
tions [41]. Several studies have suggested the genetic 
influence on DNAme at these sites is primarily technical 
in nature [41, 50, 51], suggesting the patterns in DNAme 
at these sites are likely tissue-agnostic, warranting further 
investigation in their utility in predicting ethnicity and/
or genetic ancestry in tissues other than the placenta. A 
significant proportion of other ethnicity-predictive CpG 
sites (n = 220) were previously found associated with pla-
cental mQTLs in a population with similar demographics 
to the ones studied here [42]. This finding, together with 
EPISTRU​CTU​RE—a method that also relies on mQTLs 
[9]—suggests that leveraging the tissue- and popula-
tion-specificity of mQTLs can produce highly effective 
DNAme-based population structure inference methods.

Of the existing methods to assess population strati-
fication from DNAme data, we note that Barfield’s 
method and EPISTRU​CTU​RE infer continuous meas-
ures of genetic ancestry, while Zhou’s SNP-based clas-
sifier returns discrete ethnicity classifications; however, 
ours produce both [8–10] (Table  1). EPISTRU​CTU​
RE and Barfield’s method are unsupervised PCA-based 
approaches, which rely on the empirical observation that 
specific DNAme sites can be highly correlated with PCs 
computed on genome-wide genotype data in adult blood 
samples [8, 9]. However, we found that DNAme at these 
sites did not produce PCs that are highly associated with 
genotype data in placental samples. Instead, top PCs 
were more often associated with non-ancestry related 
variables in the placental samples included in this study, 
such as gestational age, preeclampsia, and technical vari-
ables. Ethnicity- and genetic ancestry-associated PCs 
were confined to the third to sixth component of varia-
tion, suggesting that application of these methods may 
require identifying which PCs are ethnicity/ancestry-
specific, which is impossible when self-reported ethnicity 
and genetic ancestry information is unavailable (i.e. when 
these methods are needed most). Future improvements 

to these types of methods can aim at improving the 
amount of ethnicity and genetic ancestry-associated sig-
nal in the sites used to ensure the top two–three PCs are 
always associated with ethnicity and ancestry. This aim 
could also be supported in identifying ethnicity- and 
ancestry-associated sites that are also robust to changes 
in non-genetic drivers of DNAme such as cell type, gesta-
tional age, and severe pathology.

Supervised population inference approaches such as 
ethnicity classifiers can return an explicit assignment of 
samples into distinct ancestral groups. In comparison to 
self-reported ethnicity, an assessment based on DNAme/
genetic data is more objectively defined, which allows for 
more robust investigation of ethnicity-specific effects. 
An important goal of any population structure inference 
method would be to identify samples of mixed ancestry, 
a capability not well supported by Zhou’s ethnicity clas-
sifier [10]. In contrast, PlaNET produced membership 
probabilities corresponding to each ethnicity group that 
were highly correlated with genetic ancestry estimated 
from genotyping data. This was consistent whether we 
used principal components analysis on AIMs data, or 
model-based estimation of ancestry on high-density gen-
otyping array data [47, 52–54]. In this study, we defined 
samples of potential mixed ancestry as those with a maxi-
mum membership probability of less than 0.75, but we 
note that this threshold can be manually adjusted by the 
user and that the probabilities themselves can be used 
to adjust for population structure in study populations 
including significant numbers of samples with mixed 
ancestry.

Results of DNAme studies on genetic ancestry and 
ethnicity, such as this one, depend on the number and 
proportion of different populations sampled from, as 
well as the tissue studied. Due to limitations in sample 
availability, only African, Asian, and Caucasian ethnici-
ties were included in our study. However, we note that 
these ethnicities are among the most common in North 
American populations—but future developments should 
consider inclusion of additional ethnicities. Further-
more, due to limited number of samples with high-den-
sity genetic data, we were unable to address the extent 
of finer population structure that likely exists within the 
major ancestral groups studied. Differences in ethnic 
composition in samples from our study and samples used 
to develop Barfield’s method and EPISTRU​CTU​RE may 
also explain why Barfield’s method or EPISTRU​CTU​RE 
performed poorly in our study [8, 9]. A lack of general-
izability of these methods to our placental samples was 
likely further compounded by the use of different tissues 
to develop each method—Barfield and EPISTRU​CTU​RE 
were both developed and tested in blood tissue only. This 
is especially important to consider when applying these 
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techniques to tissues with unique DNAme profiles, such 
as placenta [18]. It is possible that application of these 
approaches to other tissues that are more similar to blood 
(e.g. other somatically-derived tissues) may result in bet-
ter performance compared to when applied to placenta 
as seen in this study. However, any DNAme-based test 
needs to be validated before application to new tissues, 
which has not yet been done for these methods.

A major goal of EWAS is to uncover signal truly asso-
ciated with the phenotype/environment of interest that 
might generalize to other relevant populations. This is 
challenging given the wide host of technical variables 
that can affect DNAme measurements and the common 
finding that many phenotypes are associated with rela-
tively small effect sizes [33, 55]. To this end, adjustment 
for major confounders such as genetic ancestry or ethnic-
ity can significantly improve EWAS. We demonstrated, 
in a reanalysis of our previously published PE placentas, 
that adjustment for ethnicity, determined by PlaNET, 
improved the replicability of significant associations 
between independent cohorts. Conversely, overadjust-
ment can occur when populations are relatively homo-
geneous, resulting in bias and/or loss of precision. We 
showed that PlaNET can indicate minimal population 
stratification when applied to a homogenous Caucasian 
population. Thus, PlaNET will be useful in assessing pop-
ulation stratification in future placental EWAS, as well as 
conducting ethnicity-stratified analyses, which may lead 
to important insights into the disparities between popu-
lations of pregnancy-related outcomes [24–26].

Conclusions
We demonstrated that ethnicity and genetic ancestry can 
be accurately predicted using placental HM40K DNAme 
microarray data with respect to three major ethnic-
ity/ancestral populations. Although samples that were 
used to develop PlaNET were reported to come from 
single ethnic populations, our classifier was able to cap-
ture mixed ancestry, and outperformed existing predic-
tion methods. PlaNET will be valuable in assessing and 
accounting for population stratification, which can con-
found associations between DNAme with disease or 
environment, in future studies using HM450K or EPIC 
arrays. The machine-learning approach used to develop 
PlaNET can easily be applied for other tissues and popu-
lations for use in future DNAme studies.

Methods
Collection of previously published placental HM450K DNA 
methylation data
Placental DNAme data from liveborn deliveries of 
healthy and mixed pregnancy complications (n =  585), 
were combined from seven GEO HM450K datasets 

corresponding to five North American cohorts (sum-
marized in Table 2; sample-specific information in Addi-
tional file 1: Table S4) [21, 27, 29–32]. Five unpublished 
samples from the C5 cohort were included and are avail-
able at GSE128827. Gestational ages of these pregnan-
cies at delivery ranged from 26 to 42 weeks and 50.30% 
of samples were male. Samples were excluded (n = 67) if 
their self-reported ethnicity was missing or did not fall 
into one of three major race/ethnicity groups: Asian/
East Asian (n  =  53), Caucasian/White (non-hispanic) 
(n = 389), or African/African American/Black (n = 57). 
Based on census data [56], we note that self-reported 
Caucasian/White (non-hispanic) samples are typically of 
European ancestry, self-reported Asians are typically of 
East Asian ancestry and self-reported Africans represent 
diverse ancestries from Africa with a significant poten-
tial of admixture from other ancestries [57]. When pos-
sible, data was downloaded as raw IDAT files (GSE75248, 
GSE100197, GSE100197, GSE108567, GSE74738), other-
wise methylated and unmethylated intensities were uti-
lized (GSE70453, GSE73375).

DNA methylation data processing
All samples were analyzed using the Illumina Infinium 
HumanMethylation450 BeadChip array (HM450K), the 
most popular measure of DNAme for EWAS. Array data 
analysis was performed using R version 3.5.0. To allow 
compatibility of PlaNET with the newest Infinium Meth-
ylationEPIC BeadChip array (EPIC), the raw HM450K 
data (485,512 CpGs, 65 SNPs) was filtered to the 452,453 
CpGs and 59 SNPs common between both platforms 
prior to classifier development [10]. Because genetic 
variability can capture ancestry information, we omitted 
the common filtering step that would remove sites with 
probes that overlap SNPs (n =  52,116 at a minor allele 
frequency >  0.05). CpGs were removed if greater than 
1% of samples had poor quality signal (bead count <  3, 
or a detection p-value > 0.01; n = 14,858). The remaining 
poor quality measurements were replaced with imputed 
values using K-nearest neighbours from the R package 
impute [58]. Cross-hybridizing (n = 41,937) [50, 51] and 
placental-specific non-variable sites (n  =  86,502) [59] 
were also removed, leaving 319,233 sites for classifier 
development.

Biological sex was determined by hierarchical cluster-
ing on DNAme measured from sites on the sex chro-
mosomes and then compared to reported sex. Samples 
with discordant reported and inferred sex were removed 
(n =  3). Samples were also removed if they had a low 
mean inter-array correlation (< 0.95, n = 5). Intra-array 
normalization methods, normal-exponential out-of-band 
(NOOB) [60] and beta mixture quantile normalization 
(BMIQ) [61] were used from R packages minfi (version 
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1.26.2) [62] and wateRmelon (version 1.24.0) [63] to nor-
malize data.

Genotyping data collection and genetic ancestry 
assessment
In a subset of C5 (n =  27) and 10 additional samples, 
high-density SNP array genotypes were collected. DNA 
samples from one site from the fetal side of each placenta 
were collected as previously described [45] and quality 
was checked using a NanoDrop ND-1000 (Thermo Sci-
entific) as well as by electrophoresis on a 1% agarose gel. 
Genotyping at ~ 2.3 million SNPs was done on the Illu-
mina Infinium Omni2.5-8 (Omni2.5) array at the Centre 
for Applied Genomics, Hospital for Sick Kids, Toronto, 
Canada. For inferring genetic ancestry, the data for these 
37 samples was combined with a previously processed 
1000 Genomes Project Omni2.5 dataset (n  =  1756) to 
use as reference populations [44, 48]. Genotypes in this 
combined dataset were filtered for quality (missing call 
rate > 0.05, n removed = 31,604), minor allele frequency 
(MAF > 0.05, n removed = 114,628), and linkage disequi-
librium pruning was performed to select representative 
SNPs (R2 < 0.25, n removed = 919,824) for a final dataset 
of 218,732 SNPs and n =  1793 samples. Genetic ances-
try coefficients were estimated using the R package LEA, 
which utilizes sparse non-negative matrix factorization 
to produce similar results to model-based algorithms 
ADMIXTURE and STRU​CTU​RE [47, 54]. Cross-entropy 
criterion was used to determine the number of ancestral 
populations (Additional file 2: Figure S8) [64].

A smaller panel of 50 ancestry-informative genotyp-
ing markers (AIMs) was collected in a subset of samples 
from cohorts C4 (n =  41) and C5 (n =  68). AIMs were 
selected based on their ability to differentiate between 
African, European, East Asian, and South Asian popu-
lations [65–67]. Results from cohort C5 have been pub-
lished elsewhere [45], and genotyping data was collected 
for cohort C4 in the same manner. Briefly, these markers 
were measured in placental villus DNA using the Seque-
nom iPlex Gold platform (Génome Québec Innovation 
Centre, Montréal, Canada). Genetic ancestry inferred 
from 50 AIMs markers was computed using multi-
dimensional scaling after combining with the same 50 
AIMs from the 1000 Genomes Project samples, as previ-
ously described [45].

Developing the ethnicity classifier and assessing its 
performance
To develop and assess the performance of PlaNET 
we used a ‘leave-one-dataset-out cross-validation’ 
(LODOCV) approach. This approach uses four out of 
five datasets to develop a predictive model (training), 

which is then used to generate ethnicity classifications 
on the samples in the remaining dataset (testing). This 
differs from the traditional cross validation approach 
of randomly splitting the full dataset into training and 
testing. LODOCV produces more accurate estimates of 
classifier performance for future studies, and has been 
previously used for evaluating age-predictive models 
[34]. Each iteration of LODOCV generates dataset-
specific estimates of performance (accuracy, Kappa). 
After all iterations, overall performance was assessed 
by aggregating classifications across all datasets.

For fitting predictive models within LODOCV-gen-
erated training sets, we used the R package caret [68]. 
Several algorithms were compared: logistic regres-
sion with an elastic net penalty (GLMNET) [37, 38], 
nearest shrunken centroids (NSC) [35, 69], K-nearest 
neighbours (KNN) [39], and support vector machines 
(SVM) [40]. To determine optimum tuning parameters 
for each algorithm (e.g., ‘k’ number of neighbours for 
KNN, alpha and lambda for GLMNET), we built sev-
eral models while varying the tuning parameter(s) and 
compared the performance of these models within 
each training set using repeated (n =  3) fivefold cross 
validation. Hyperparameter values were left as default 
settings in caret [68], or a grid of values for GLMNET 
(alpha  =  0.025–0.500, lambda  =  0.0025–0.2500). We 
compared the performance of these models using accu-
racy, positive predictive value, cohen’s Kappa [70], and 
logLoss (a measure of classification accuracy that heav-
ily penalizes over-confident misclassifications). The 
results from this analysis can be found in Additional 
file  1: Tables S2, S3. After assessing the classifier per-
formance using LODOCV, a final GLMNET model was 
fit to the entire dataset (cohorts C1–C5) using the same 
model fitting procedure described above and is availa-
ble for use in future datasets (https​://githu​b.com/wvict​
or14/plane​t).

Enrichment analysis
The DNAme sites (see Additional file 1: Table S1) and 
SNPs selected to predict ethnicity in this final model 
(n  =  1860) were used for enrichment analysis. For 
DNAme sites, we looked for enrichment for SNPs in 
the probe body, CpG site, and single base extension 
sites based on Illumina’s HM450K annotation ver-
sion 1.2 [71]. We looked for enrichment for placental 
mQTLs [42], chromosomes and CpG islands (HG19; 
Additional file  2: Figure S5). Fisher’s exact test was 
used for all enrichment tests using a p-value threshold 
of < 0.05, and was carried out in R using the function 
fisher.test(). GO and KEGG pathway analysis was done 
using the R package missMethyl version 3.8 [72].

https://github.com/wvictor14/planet
https://github.com/wvictor14/planet
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Threshold analysis
We explored the use of a ‘threshold function’ to identify 
samples that are difficult to classify into discrete ethnic-
ity groupings because of mixed ancestry. Because PlaN-
ET’s ethnicity classifications are associated with varying 
degrees of confidence (i.e., probabilities), we reasoned 
that a sample’s most probable ethnicity classification (i.e., 
max(P(Asian), P(African), P(Caucasian)) would be lower 
with a higher degree of mixed ancestry. Therefore, we 
implemented a threshold function on PlaNET’s probabil-
ity outputs that classifies samples as ‘Ambiguous’ if the 
highest of the three class-specific probabilities is below 
a certain threshold. We explored several thresholds and 
decided on 0.75, which minimized the resulting decrease 
in predictive performance (Additional file 2: Figure S3).

Comparison of methods for inferring genetic ancestry/
ethnicity from HM450K data
Because existing population inference methods and 
PlaNET use different statistical approaches to infer 
genetic ancestry/ethnicity (PCA-based vs. predictive 
modeling), we compared each method based on the 
amount of population-associated signal in DNAme from 
each method-specific subset of sites. This was done by 
applying principal component analysis (PCA) to stand-
ardized beta values for HM450k sites associated with 
each method (Table  1) [8–10] within each cohort. To 
avoid bias, the PCs associated with PlaNET were cal-
culated for each cohort using a classifier trained on all 
other cohorts (generated from LODOCV). Several sim-
ple linear regression models were applied to estimate 
the amount of variance explained in PCi (i =  1, 2, 3,…, 
10) by self-reported ethnicity and genetic ancestry when 
available. Self-reported ethnicity was encoded with indi-
cator variables when testing group-specific associations 
(Additional file 2: Figure S6) and also overall association 
with ethnicity (Fig. 4a). Genetic ancestry was tested using 
coordinates one, two, and three, in a total of four differ-
ent models: three models of each coordinate tested sepa-
rately (Additional file 2: Figure S6), and then one model 
including both coordinates one and two to gain an overall 
estimate of the association with genetic ancestry (Fig. 4). 
To determine other factors that might affect signal in 
these sites, we also tested for the association between PCi 
and each covariate available for each cohort. All simple 
regression tests were done in R using the function lm(). 
For Barfield’s approach, we compared the various sets of 
sites that differ by the distance of a given CpG site to the 
nearest genetic variant (0, 1, 2, 5, 10, 50 bp) (Additional 
file 2: Figure S10). We used the set “0 bp from a genetic 
variant”, following two observations: (1) the sets (0, 1, 2, 
5 bp) were not significantly different in their association 

with ethnicity or genetic ancestry (p value  >  0.05), and 
(2) the sets (10, 50 bp) were significantly less associated 
with ethnicity and genetic ancestry for the first PC (p 
value < 0.05). In summary, the closer the genetic variant 
was to the CpG, the stronger the signal associated with 
genetic ancestry and ethnicity.

To compare PlaNET to Zhou et al.’s SNP-based classi-
fier [10], we used the package R package sesame (version 
1.1.0) [73] to obtain SNP-based ethnicity classifications 
for samples with idats available (cohorts C3, C4, and C5). 
To compare class-specific performance, McNemar’s Chi-
squared Test for Count Data was calculated using the 
stats R package.

Application of PlaNET to previous EWAS
To demonstrate application of PlaNET, we down-
loaded placental HM450K DNAme datasets GSE98224, 
GSE100197, and GSE71678. We note that GSE100197 
and GSE98224 overlap cohorts C4 and C5, respectively. 
To apply PlaNET to obtain ethnicity information, raw 
data were downloaded from GEO in the form of IDATs 
and loaded into R using minfi (version 1.26.2). Both 
NOOB and BMIQ normalization were applied before 
applying PlaNET. The R package limma (version 3.36.2) 
was used to test for differentially methylated sites. For 
GSE98224 and GSE100197, the processed DNAme data 
were used, and statistical thresholds were chosen the 
same as the published analysis [21]. For enrichment 
analysis, differentially methylated CpGs were inputted 
into the gometh function from the R package missMethyl 
(version 1.16.0) using all filtered sites as background, and 
default settings.

Additional files

Additional file 1: Table S1. Ethnicity-predictive HM450K sites. A list of all 
PlaNET’s 1860 automatically-selected ethnicity-predictive HM450K sites. 
Table S2. PlaNET’s cohort-specific ethnicity classification performance. 
PlaNET’s classification performance described across cohorts, assessed 
using LODOCV. Table S3. PlaNET’s ethnicity classification performance 
described by class. PlaNET’s classification performance described across 
ethnicity groups, assessed using LODOCV. Table S4. Sample metadata. 
A table of sample-specific information. Table S5. PE linear modeling 
results while adjusting for predicted ethnicity. Results containing 651 
PE-associated sites from linear modeling while adjusting for predicted 
ethnicity. Table S6. PE linear modeling results in Caucasian cohort. Results 
containing 359 PE-associated sites from linear modeling in Caucasian-only 
samples. Table S7. GO enrichment analysis results. GO terms specifi-
cally enriched based on the 651 PE-associated sites obtained from linear 
modeling. 

Additional file 2: Figure S1. Dataset-specific effects. PC1 by PC2 scat-
terplot from PCA computed on scaled and centered DNAme beta values 
from 499 samples and 319,233 sites. Figure S2. Performance between 
machine learning algorithms in training. Resampling results for each 
machine learning algorithm. a performance (LogLoss) between machine 
learning algorithms in predicting ethnicity, and b class-specific accuracy. 

https://doi.org/10.1186/s13072-019-0296-3
https://doi.org/10.1186/s13072-019-0296-3
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Figure S3. Threshold analysis for determining “ambiguous” samples. Vari-
ous cutoffs for predicted membership probabilities were compared with 
respect to changes in predictive performance. Figure S4. Dataset-specific 
performance. PlaNET’s classification performance was calculated for each 
dataset using a model trained to all other datasets. Figure S5. Enrichment 
analysis on ethnicity-predictive HM450K sites. PlaNET’s CpG sites used to 
predict ethnicity was tested for enrichment with respect to a chromo-
somal location, and b relation to CpG islands. Figure S6. Association of 
population structure PCs with technical and biological variables. PCs were 
computed on ethnicity-predictive sites, EPISTRU​CTU​RE, Barfield’s method 
and the 59 SNP probes. Each PC was tested for their association with vari-
ous cohort-specific technical and biological variables. For a given cohort 
(e.g. C1), ethnicity predictive sites from a classifier trained on all other 
cohorts (e.g. C2–C5) was used to avoid bias. Figure S7. PlaNET vs. Zhou 
et al. [10] snp-based classifier. PlaNET‘s ethnicity classification performance 
was compared to Zhou et al. [76] SNP-based ethnicity classifier in cohorts 
C3, C4, and C5. Figure S8. Estimating k number of ancestral populations 
using in genetic admixture inference program LEA. The cross-entropy 
criterion was used to determine the number of ancestral populations for 
estimating genetic ancestry coefficients. The number of ancestral popula-
tions was chosen at the point k = 3, when the cross-entropy criterion 
decreases significantly less with each integer-increase in k. Figure S9. 
Application of PlaNET to placental EWAS. Samples from three independ-
ent cohorts are plotted along three axes by their probability of belonging 
to each ethnicity class and colored by their final ethnicity classification 
determined by PlaNET. Figure S10. Evaluation of Barfield’s alternative 
location-based filtering approaches. The signal associated with ethnicity 
and genetic ancestry was measured in relation to the distance of which 
a genetic variant lies to a CpG site (0, 1, 2, 5, 10, 50 bp). a Amount of 
variance explained in PCi (i = 1, 2, 3, …, 10) by either ethnicity or genetic 
ancestry. b Whether there was difference in the amount of ethnicity or 
genetic ancestry-associated variation in PCi, depending on distance to a 
genetic variant. Direction of association is indicated, where the reference 
group is the 0 bp set.
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