
McEwen et al. Epigenetics & Chromatin  (2017) 10:21 
DOI 10.1186/s13072-017-0128-2

RESEARCH

Differential DNA methylation 
and lymphocyte proportions in a Costa Rican 
high longevity region
Lisa M. McEwen1 , Alexander M. Morin1, Rachel D. Edgar1, Julia L. MacIsaac1, Meaghan J. Jones1, 
William H. Dow2, Luis Rosero‑Bixby3, Michael S. Kobor1 and David H. Rehkopf4*

Abstract 

Background: The Nicoya Peninsula in Costa Rica has one of the highest old‑age life expectancies in the world, but 
the underlying biological mechanisms of this longevity are not well understood. As DNA methylation is hypothesized 
to be a component of biological aging, we focused on this malleable epigenetic mark to determine its association 
with current residence in Nicoya versus elsewhere in Costa Rica. Examining a population’s unique DNA methylation 
pattern allows us to differentiate hallmarks of longevity from individual stochastic variation. These differences may be 
characteristic of a combination of social, biological, and environmental contexts.

Methods: In a cross‑sectional subsample of the Costa Rican Longevity and Healthy Aging Study, we compared 
whole blood DNA methylation profiles of residents from Nicoya (n = 48) and non‑Nicoya (other Costa Rican regions, 
n = 47) using the Infinium HumanMethylation450 microarray.

Results: We observed a number of differences that may be markers of delayed aging, such as bioinformatically 
derived differential CD8+ T cell proportions. Additionally, both site‑ and region‑specific analyses revealed DNA meth‑
ylation patterns unique to Nicoyans. We also observed lower overall variability in DNA methylation in the Nicoyan 
population, another hallmark of younger biological age.

Conclusions: Nicoyans represent an interesting group of individuals who may possess unique immune cell propor‑
tions as well as distinct differences in their epigenome, at the level of DNA methylation.
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Background
Aging is a complex biological process that progressively 
leads to physiological decline and an increased risk of 
mortality. The genetic component of life span is approxi-
mated to be less than 30%, leaving the remainder to be 
determined by environmentally and socially influenced 
factors such as diet, exposure to infection, and lifestyle 
choices [1, 2]. While the mechanistic regulation of these 
non-genetic influences is poorly understood, previous 

work has suggested that epigenetic processes may be 
tightly interwoven with biological aging [3].

Epigenetics generally refers to the study of altered 
chromatin states, such as modifications to DNA and 
the proteins involved in its packaging and regula-
tion. To date, DNA methylation (DNAm) is the most 
commonly studied epigenetic mark in human popula-
tions, as recent advances in technology have allowed 
for the inexpensive high-throughput measurement 
of >400,000 CpG sites across the genome. There are 
many other studied epigenetic processes, such as post-
translational histone modifications, histone variants, 
and noncoding RNAs; however, these modifications 
have been more of a focus in model organism research 
and cancer biology.
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DNAm is one type of epigenetic modification that 
impacts how genes are expressed and thus can have 
important phenotypic and functional consequences for 
an organism. Unlike the DNA sequence itself, DNAm is 
changeable through environmental influences over an 
individual’s life course. DNAm involves the covalent addi-
tion of a methyl group to the 5′ carbon of cytosine nuce-
lotides, most often in the context of CpG dinucleotides 
(cytosine–phosphate–guanine). Genetic variants, such 
as single nucleotide polymorphisms (SNPs), can affect 
DNAm at nearby CpG sites, called methylation quanti-
tative trait loci (mQTL) [4]. DNAm also varies in asso-
ciation with environmental and behavioral factors, such 
as diesel exposure and smoking. Additionally, variability 
in DNAm accumulates across one’s entire life span, dis-
cussed in detail below. DNAm patterns are associated 
with altered gene activity. Shifts in DNAm levels may 
follow a change in gene expression, or may act in the 
recruitment of methylation-dependent transcription fac-
tors that regulate transcriptional machinery. Understand-
ing the effect of environmental influences on DNAm 
is important for unraveling the intricate regulation of 
genes and possible functional consequences of these 
alterations.

Age-related DNAm encompasses at least two distinct 
phenomena. First, specific CpGs associated with chrono-
logical age have been identified and, in some cases, rep-
licated in several human populations. These age-related 
DNAm signatures can be either tissue specific or occur 
across several tissue types [5]. The epigenetic clock is a 
tool based on CpGs that change with age. Epigenetic 
clocks are DNAm-based markers of biological age, either 
confined to a single tissue or consistently accurate across 
tissues [6–8]. Deviations from these epigenetic age esti-
mates, referred to as a measure of age acceleration, 
have been associated with an increased risk of all-cause 
mortality, time until death, and frailty [9–11]. Second, 
variability increases with age due to stochastic non-site-
specific changes in DNAm, a process referred to as epige-
netic drift [12].

It is critical to address cell-type heterogeneity when 
investigating DNAm patterns in tissues containing 
mixed cell types. Not only does cell type change over 
one’s life span but it is also the primary source of varia-
tion in DNAm across healthy individuals. DNAm profiles 
obtained from identical cell types, but separate individu-
als, show higher similarity than two different cell types 
from the same individual [13]. Given that isolating DNA 
from a single cell type is not always feasible or that cell 
count information is sometimes not available, bioinfor-
matics-based methods have been developed to estimate 
cell-type proportions using DNAm profiles in blood and 
brain [14, 15]. The blood-based predictions are closely 

correlated with complete blood count measures, thus 
suggesting the validity of these methods to derive accu-
rate blood count information bioinformatically [16]. It is 
also worth noting that measures of epigenetic age accel-
eration specific to whole blood have been defined to 
account for age-induced changes to cell-type proportions 
[6]. These measures are integral when analyzing DNAm 
from whole blood, as the proportion of certain blood cell 
types, such as CD8+ memory and naïve T cells, change 
with age [17].

Aging research in humans commonly investigates the 
unique biological and lifestyle characteristics of individu-
als surviving to old age [18]. An alternative approach, 
used in the current study design, is to examine the under-
lying biology of longevity by examining a population 
characterized as having a particularly high old-age life 
expectancy [19], the Nicoya region of Costa Rica, and 
comparing it to the rest of Costa Rica which has mod-
erately lower life expectancy. By averaging out the sto-
chastic variation in aging among individuals within each 
geographic region of the country, this approach offers a 
way to identify contextual (rather than individual) differ-
ences associated with healthy aging and longevity. While 
the method of examining area-based determinants of 
health and longevity has received substantial attention 
in biomedical research [20], a lack of appropriate data 
sources have limited its application in understanding the 
biological mechanisms of longevity.

The Nicoya peninsula of Costa Rica has been char-
acterized by exceptionally high longevity, providing an 
intriguing framework to explore the relationship between 
DNAm and aging [21]. Mortality rates among elderly 
Costa Ricans in Nicoya are substantially lower than in the 
rest of Costa Rica, with individuals in Nicoya being some 
of the most long lived in the world. The relative mortal-
ity rate of Nicoya as compared to similar age cohorts in 
the rest of Costa Rica is 0.80. This advantage remains sig-
nificant after statistical control for level of education and 
type of health insurance [21]. The Nicoyan advantage is 
particularly evident in cardiovascular disease, despite the 
fact that risk factors like smoking, physical activity and 
systolic blood pressure are similar throughout Costa Rica. 
One key indicator of the Nicoyan advantage is longer knee 
height—an anthropometric biomarker that is associated 
with early childhood environment [22]. Nicoyans also 
have lower BMI, waist circumference, and, among men, 
lower levels of HbA1c, glucose, triglycerides and total/
HDL cholesterol ratio [21]. We have previously shown 
that leukocyte telomere length, an aging biomarker, also 
has more favorable (longer) levels among Nicoyans com-
pared to individuals in the rest of Costa Rica [23].

In this study, we examined DNAm in a nationally rep-
resentative population of Costa Ricans, investigating 
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potential biological differences that may help explain the 
higher longevity observed in Nicoyans as compared to 
other Costa Ricans. We focused on DNAm, as this epi-
genetic mark can be modified by environmental influ-
ences, has the potential to regulate gene expression, and 
most importantly, has an established relationship with 
aging across the mammalian life span. Using genome-
wide DNAm patterns to predict blood cell-type composi-
tion, we determined differential estimated proportions of 
age-related immune cells. While we did not observe dif-
ferences in epigenetic age acceleration, we did find signif-
icantly decreased DNAm variability in Nicoyans. Finally, 
we identified DNAm patterns unique to Nicoyans, at 
both genomic regions and specific CpG sites. Under-
standing DNAm patterns between Nicoyans and other 
Costa Ricans (non-Nicoyans) will offer new insights both 
into the role of DNAm in aging and perhaps help to illu-
minate why Nicoyans have among the longest old-age life 
expectancies.

Results
Cohort characteristics and DNA methylation data
We examined a subset of samples from the Costa Rican 
Study on Longevity and Healthy Aging (CRELES), a lon-
gitudinal, nationally representative, and probabilistic 
sample of close to 3000 adults aged 60  years and over 
that were collected mostly in 2005, with over-sampling 
of older ages [24]. We assayed DNAm profiles of 48 
Nicoyans (longevity group) and 47 non-Nicoyans (con-
trol group). In order to maximize statistical power for 
our age-based hypothesis, we randomly sampled half of 
the individuals between the ages of 60 and 75 and the 
other half aged 95 and above, selecting an equal number 
in each age category among Nicoyans and non-Nicoyans 
to have an age-matched sample. Table 1 shows the mean 
characteristics of these populations. Nicoyans tend to 
have lower levels of education and lower wealth than 
non-Nicoyans, but are similar on observed health-related 
characteristics. We obtained DNAm profiles from whole 
blood using the Infinium HumanMethylation450 (450k) 
array, a genome-wide microarray that quantifies DNAm 
at over 485,000 sites. We applied data quality controls to 
remove poor performing probes, probes that hybridized 
the XY chromosomes, and probes predicted to cross-
hybridize [25]. Our final dataset for subsequent analyses 
consisted of 441,109 sites.

Nicoyans had fewer estimated CD8+ memory and more 
naïve T cells than non‑Nicoyans
Whole blood is a heterogeneous tissue containing cer-
tain cell types that change with age, with age-related 
decreases occurring in CD8+ T, CD4+ T and B lym-
phocytes, and the greatest increases in natural killer 

cells and monocytes [26]. To assess these differences in 
our cohort, we performed a previously described blood 
cell-type deconvolution [14] by using the DNAm profiles 
of each sample to estimate the proportions of granulo-
cytes, natural killer cells, CD8+ T lymphocytes, CD4+ 
T lymphocytes, monocytes, and B lymphocytes. We 
found that Nicoyans had a significantly lower propor-
tion of estimated CD8+ T cells when compared to non-
Nicoyans (Kruskal–Wallis p value  =  0.0038) (Fig.  1a). 
We also observed that Nicoyans had a higher mean 
level of estimated granulocyte proportions, although 
only reaching borderline significance (Kruskal–Wallis p 
value = 0.0486). It is important to note that we did not 
focus on the blood composition as a whole, as we were 
primarily interested in specific age-related cell-type 
trends.

To further investigate the differential proportion of 
estimated CD8+ T cells, we applied a more detailed cell 
deconvolution tool that provides an expanded estima-
tion of CD8+ T naïve cells (CD8+ CD45RA+ CCR7+) 
and CD8+ T memory cells (CD8+ CD28− CD45RA−) 
[6]. CD8+ T memory cells typically increase with age, 
and CD8+ T naïve cells generally decrease with age 
through thymic involution [27]. Given that these meas-
ures are proportional and highly correlated, it is statisti-
cally appropriate to assess the ratio of CD8+ T naïve 
cells to CD8+ T memory cells (Additional file  1: Figure 
S1). Using this approach, we found a significant difference 
between Nicoyans and non-Nicoyans (Kruskal–Wallis p 
value = 0.0135). We observed a greater abundance of pre-
dicted CD8+ T naïve cells in Nicoyans and a lower abun-
dance of estimated CD8+ T memory cells in Nicoyans, as 

Table 1 Cohort characteristics (means and  percents), 
Nicoyans and non-Nicoyans

Standard deviations are shown in parenthesis. Low education is not completing 
primary school. The wealth index was based on a simple count of ten goods 
and conveniences in the household, ranging from running water and a toilet to 
having a cloth washer and a car. Low wealth is having six or fewer of these items. 
Systolic and diastolic blood pressure and body mass index were measured at 
the time of interview. Currently smoking was assessed through questionnaire. 
Further details on survey measures are available elsewhere [45]

Characteristics Nicoya  
(n = 48)

Non‑Nicoya 
(n = 47)

Age (mean in years) 83 (14) 85 (16)

Female (%) 57 55

Low education (%) 80 68

Low wealth (%) 35 21

Currently smoke (%) 4 6

Systolic blood pressure (mean mmHg) 139 (23) 140 (25)

Diastolic blood pressure (mean 
mmHg)

78 (12) 78 (13)

Body mass index (mean) 24 (7.1) 25 (5.8)
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compared to non-Nicoyans (Fig.  1b). These trends were 
suggestive of a younger immune cell profile in Nicoyans.

Pearson’s correlation coefficients were computed to 
assess the relationship between chronological age (log 
transformed) and the estimated proportion of each 
CD8+ T cell type (Fig. 1c). We observed a negative cor-
relation between chronological age and CD8+ T naïve 
proportion (Nicoyans and non-Nicoyans; Pearson’s 
r = −0.55 and −0.61, respectively). As expected, there 
was a positive correlation between age and CD8+ T 

memory cells (Nicoyans and non-Nicoyans; Pearson’s 
r =  0.61, and 0.61, respectively; Fig.  1c), demonstrating 
a known immunological aging trend, but here based on 
epigenetic data. We found no significant difference in the 
regression slopes of chronological age on either CD8+ 
T cell type, when comparing Nicoyans to non-Nicoyans 
(p > 0.50); while we did observe differences in mean lev-
els of both estimated CD8+ T cell types, we did not see 
any group difference in the nature of how these cell types 
changed across age.
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Fig. 1 Nicoyans had differential CD8+ naïve and memory T cell abundance levels. a Box plots demonstrating bioinformatically derived white blood 
cells in Nicoyans and non‑Nicoyans. Cell proportions estimated using the Houseman method. Blue: Nicoyans, white: non‑Nicoyans. The p value 
is derived from a nonparametric group comparison test using Kruskal–Wallis. b Box plots illustrating the relationship between the bioinformati‑
cally derived CD8+ naïve T cell and CD8+ memory T cell across Nicoyans and non‑Nicoyans. c Scatter plots of chronological age plotted against 
each CD8+ naïve T cells and CD8+ memory T cells abundance level for each sample. CD8+ naïve T cell show a decrease with age, whereas CD8+ 
memory T cells increase with chronological age. Pearson’s r coefficients derived from log‑transformed age correlated with each respective cell‑type 
level. Blue: Nicoyans, black: non‑Nicoyans. Line of best fit shown with 95% confident intervals shaded in respective group color. The scale of cell 
abundance is a measure from a bioinformatically derived prediction of the respective cell types using flow‑sorted counts from other datasets to 
infer cellular proportions of that specific isolated cell type based on the DNA methylation data [9, 46, 47]
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Epigenetic age did not differ between Nicoyans 
and non‑Nicoyans
Having established differences in estimated CD8+ T cell 
populations between the two groups, we next examined 
DNAm age as an established metric of biological aging. 
We examined DNAm age of Nicoyans compared to non-
Nicoyans using three epigenetic clocks, which provided 
measures of biological age using DNAm levels at differ-
ent groups of CpG sites (Fig.  2a) [6–8]. Across all sam-
ples, we found correlations between DNAm age and 
chronological age (Horvath: Pearson’s r  =  0.86, Han-
num: Pearson’s r =  0.85, Weidner: Pearson’s r =  0.86). 
However, we found no significant difference between 
Nicoyans and non-Nicoyans in terms of DNAm age (as 
calculated by each clock), while adjusting for chrono-
logical age (ANOVA p  >  0.30, 95% CI for the Horvath 
clock was −6.3 to 3.8  years). We did, however, observe 
a mean difference of −6.9 years between epigenetic age 
and chronological age for all samples, suggesting that 
Costa Ricans, inclusive of both Nicoyans and non-Nicoy-
ans, may on average be epigenetically younger than their 
chronological age (Fig. 2b). Furthermore, we reduced our 
data to only centenarians (age ≥ 100 years old), and the 
mean absolute difference between DNAm age and chron-
ological age was −12.7 years.

We further examined biological age by assessing two 
other recently defined measures of age acceleration: 
intrinsic and extrinsic epigenetic acceleration, which are 

independent and dependent of blood cell-type propor-
tions, respectively. We did not find any significant differ-
ence between Nicoyans and non-Nicoyans in any of these 
acceleration measures (ANOVA p ≥ 0.5, Additional file 2: 
Figure S2).

DNA methylation variability was lower in Nicoyans
After assessing whether any differences in epigenetic age 
existed, we next investigated epigenetic drift between 
Nicoyans and non-Nicoyans. We hypothesized that lower 
variability in Nicoyans would be representative of a bio-
logically younger profile based on the epigenetic drift 
phenomenon where stochastic variation in DNAm occurs 
with age. We calculated the interquantile range (IQR) at 
each CpG site (90th–10th percentile) represented on the 
450k array to account for outliers and found a significant 
variability difference between Nicoyans and non-Nicoy-
ans (Wilcoxon signed-rank test; p < 2.2 × 10−16), with a 
lower level of total mean DNAm variation in Nicoyans 
(Fig.  3a). Furthermore, we assessed the level of DNAm 
variability across individuals between 60 and 80  years 
old and individuals >80 years old, in Nicoyans and non-
Nicoyans. We found a lower DNAm variability in the 
younger group, in both populations. However, there was 
a greater difference between the non-Nicoyan old and 
young age groups compared to the Nicoyans respective 
age groups (non-Nicoya: IQR mean difference = 0.0065, 
p < 2.2 × 10−16, Nicoya: IQR mean difference = 0.0043, 
p =  1.79 ×  10−10). Lastly, when a β  value IQR thresh-
old of ≥5% was applied to only variable sites, we found 
129,971 and 146,047 variable sites in the >80-year-old 
range of Nicoyans and non-Nicoyans, respectively. For 
the younger age range, we found 116,038 and 120,711 
sites that had greater than 5% IQR in Nicoyans and non-
Nicoyans, respectively (Fig.  3b). In summary, we found 
a lower degree of DNAm variability was associated 
with Nicoyans for both age groups, 60–80 years old and 
>80 years old, when compared to non-Nicoyans.

Unique region‑based differential methylation in Nicoyans
We next investigated differentially methylated regions 
(DMRs) between Nicoyans and non-Nicoyans to identify 
unique epigenetic signatures that may be associated with 
the longevity observed in Nicoya. Using the R package 
‘DMRcate,’ we found that in the comparison of Nicoyans 
and non-Nicoyans, 20 DMRs containing three or more 
CpG sites passed a false discovery rate of ≤0.05, as well as 
an arbitrary biological cutoff of a β value ≥ 5% between 
groups for at least one CpG site in each DMR (Table 2; 
Fig.  4; Additional file  3: Figure S3). Age, sex, and blood 
cell-type proportions were used as covariates. DMRs 
were associated with genes based on the closest proxim-
ity to a transcription start site (TSS). The mean length 
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of the DMRs was 411 bp, with the shortest being 76 bp 
and the longest being 1416 bp. On average, out of the 20 
DMRs observed, there were seven CpG sites per region, 
with a range from 3 to 16. Six DMRs were found within 
1500  bp of a TSS associated with the following genes’ 
promoter region: Nudix Hydrolase 12 (NUDT12) (6 
CpGs), Vault-RNA-2 (VTRNA2-1) (16 CpGs), Peptidase 
M20 Domain Containing 1 (PM20D1) (8 CpGs), Active 
BCR-Related (ABR) (3 CpGs), tRNA-Leu (5 CpGs), and 

LOC100128885 (uncharacterized) (3 CpGs). The major-
ity of DMRs were found in intergenic regions (8/20) with 
an average number of four CpGs per DMR and average 
length of 267  bp. Four DMRs were found in the body 
(intragenic) of the following genes: Glutamate-rich pro-
tein 1 (ERICH1) (8 CpGs), Hook Microtubule Tethering 
Protein 2 (HOOK2) (4 CpGs), GATA2 Antisense RNA 1 
(GATA2-AS1) (3 CpGs), and C15orf26 (uncharacterized) 
(4 CpGs). Two DMRs were found in the 3′end regions 
of Mitochondrial Ribosomal Protein L21 (MRPL21) (3 
CpGs) and BolA family member 3 (BOLA3) (5 CpGs). 
The average absolute difference in DNAm between 
Nicoyans and non-Nicoyans was 7.9% when assessing the 
single CpG site for each DMR that showed the greatest 
difference between groups. When DNAm was averaged 
across the DMR per group, the mean β value difference 
was 5.9%. 

Site‑specific differential methylation in Nicoyans 
and technical verification
To complement the region-specific analysis, we also 
assessed DNAm differences at the site-by-site level to 
identify any single sites that were differentially meth-
ylated in Nicoyans as compared to non-Nicoyans. By 
investigating site-specific changes, we did not limit our-
selves to highly represented genomic regions on the 450k 
array. We performed an epigenome-wide association 
study using a linear model of population group regressed 
on M values at each CpG site, with sex, age, and blood 
cell-type proportions included as covariates (Additional 
file 4: Figure S4). We observed nine CpGs below a nomi-
nal p value significance threshold of p  ≤  5  ×  10−7 (q 
value < 0.022, Table 3) that were differentially methylated 
between Nicoyans and non-Nicoyans. After applying a 
biological threshold similar to the DMRcate analysis, four 
CpG sites passed our significance criteria: cg02853387 
(DSCAML1), cg02438481 (C6orf123), cg13979274 
(OR10H1), cg26107275 (BC042649). Not surprisingly, the 
four significant CpG sites did not overlap with our DMR 
findings, as these single CpGs identified through the 
site-by-site analysis were either: (1) found in a genomic 
region with no proximal array probes, or (2) nearby CpGs 
sites were not significantly correlated. The nearest neigh-
boring array-CpG probe was greater than 1 kb away for 
three out of the four significant CpG sites (cg02853387, 
cg13979274, and cg26107275). While for cg02438481, the 
closest array-CpG (cg00788354) was 324 bp away, it had a 
Pearson’s correlation of r < 0.10 and was not significantly 
differentially methylated between groups.

We performed pyrosequencing, a targeted DNAm 
sequencing technology, to verify that our single dif-
ferential DNAm results were reproducible using an 
independent platform. We designed assays to measure 
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three CpG sites that were observed to have a significant 
between group (Nicoyans and non-Nicoyans) differ-
ence in DNAm of ≥5.0% (cg02853387, cg02438481, and 
cg13979274) (sequences listed in Additional file 6: Table 
S1). Correlation coefficients between the pyrosequenc-
ing and 450k array for each CpG site showed a strong 

concordance between the two technologies [rs  =  0.87 
(cg02853387), rs  =  0.92 (cg02438481), and rs  =  0.88 
(cg13979274)]. Bland–Altman plots were generated 
for each CpG site to illustrate the agreement between 
the two quantification techniques (Fig.  5). To verify 
our differential DNAm findings between Nicoyans and 
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Fig. 4 Significantly differentially methylated regions between Nicoyans and non‑Nicoyans. Top six of 20 significant DMRs found using ‘DMRcate.’ 
Unadjusted β values are displayed on the y‑axis and genomic distance (bp) to the most proximal gene transcriptional start site (TSS) is plotted on 
the x‑axis. Blue Nicoyans, red non‑Nicoyans. Group mean represented by respective colored line

Table 3 Characteristics of  four biologically and  statistically significant DNA methylation sites between  Nicoyans 
and non-Nicoyans

Δβ: (Delta beta; absolute mean difference of β values between groups (Nicoyans–non-Nicoyans)

TSS Transcription start site, Chr chromosome

Probe ID Pyrosequencing 450k array Chr Distance to  
closest TSS (bp)

Genomic region: gene Gene ontology

Δβ p value Δβ p value q value

cg02853387 0.06 7.9E−05 0.07 1.3E−07 0.012 11 183072 Intragenic: intron 3 of 
DSCAML1

Protein homodimerization 
activity

cg02438481 0.08 1.9E−05 0.08 1.6E−07 0.012 6 −1861 Intergenic: C6orf123 –

cg13979274 0.06 9.1E−07 0.06 2.0E−07 0.012 19 4347 Intergenic: ~ 3 kb from 
3′ end of OR10H1

G‑protein coupled receptor/
olfactory receptor activity

cg26107275 – – −0.07 2.2E−07 0.012 12 −407 Promoter: BC04264 –
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non-Nicoyans, we confirmed these associations by sta-
tistically regressing DNAm determined by pyrosequenc-
ing onto group status, while controlling for age, cell-type 
proportions, and sex. All three sites remained signifi-
cantly different between Nicoyans and non-Nicoyans 
(Table 3; Fig. 5).

Lastly, to determine whether a measure of genetic 
population structure was confounded with group 
(Nicoyans vs non-Nicoyans), we performed a post hoc 
analysis using ‘Epistructure’ [28]. Principal component 
analysis was completed on DNAm of CpGs previously 

identified as genetically informative loci. The first two 
principal components generated from this analysis have 
been proposed to confer composites of genetic struc-
ture to be used as covariates in a DNAm analysis. Using 
this technique, we did not observe a significant differ-
ence between the Epistructure principal components 
of the measures in Nicoyans and non-Nicoyans, while 
controlling for sex, age, and cell-type proportions (PC1: 
p =  0.60, PC2: p =  0.93, Additional file  5: Figure S5); 
therefore, we did not include these measures in our 
analyses.
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Fig. 5 Pyrosequencing of significantly differentially methylated single CpGs. Left Bland–Altman plot of concordance between 450k array and 
pyrosequencing result for each CpG. Text labels represent sample IDs. Middle scatter plot displaying correlation between 450k array and pyrose‑
quencing for each CpG. Spearman correlation coefficients shown. Right box plots of significant difference between Nicoyans and non‑Nicoyans at 
each CpG site, measured using pyrosequencing. Significant value from regression model of CpG methylation on group status, while controlling for 
sex, age, and cell‑type proportions



Page 10 of 14McEwen et al. Epigenetics & Chromatin  (2017) 10:21 

Discussion
In this study, we investigated differential patterns of DNAm 
in a population with well-characterized high longevity: 
Nicoya, Costa Rica. We aimed to identify unique patterns 
of DNAm that may underlie biological pathways associ-
ated with the longevity observed in Nicoya. Our study 
sample was drawn from a nationally representative demo-
graphic study of Costa Ricans age 60 years and over, and 
we randomly sampled individuals from within Nicoya and 
the rest of Costa Rica who were aged 60–75 and 95 years 
and above in order to assess age-associated DNAm. We 
have four primary findings. First, we observed a bioin-
formatically inferred younger immune profile in Nicoyan 
individuals compared to those living in the rest of Costa 
Rica, finding cellular proportion differences in CD8+ 
naïve and CD8+ memory T cells. Next, we found a lower 
level of total mean DNAm variation in Nicoyans compared 
to non-Nicoyans. We found 20 DMRs and four single CpG 
sites that were differentially methylated between Nicoy-
ans and non-Nicoyans. While any of these differences we 
observed may be due to genetic differences in the popula-
tions, the fact that we show that estimated genetic struc-
ture did not differ between Nicoyans and non-Nicoyans 
suggests that these biological differences are more likely to 
be the result of environmental differences between these 
two populations. Lastly, DNAm age was not significantly 
different between Nicoyans and non-Nicoyans, although 
Costa Ricans overall had a younger mean DNAm age than 
the mean chronological age.

Our finding of proportional differences in CD8+ naïve 
and CD8+ memory T cells is intriguing in the context 
of previous work from animal models and other human 
research that has established that these blood cell pro-
portions change as a function of age. Specifically, the 
naïve T cell response diminishes with time as they are 
naturally replaced by memory T cells through age-related 
thymic involution [17, 29]. Therefore, younger immune 
profiles have been hypothesized to delay the onset of 
infection vulnerability and extend health span [30]. Inter-
estingly, centenarian offspring have been investigated in 
this context and show this ‘youthful’ immune cell pheno-
type [31]. The fact that our work suggested that Nicoy-
ans had a lower proportion of CD8+ T memory cells and 
higher CD8+ T naïve cells is interesting in the context of 
immunoaging and might be suggestive of an age-related 
immune phenotype in Nicoyans.

Given their lower mortality rate, we were surprised 
about the lack of differences in DNAm age between 
Nicoyans non-Nicoyans, especially given that this bio-
logical aging measure has been associated with many 
age-related conditions such as cognitive fitness decline, 
frailty, and mortality [9, 11, 32]. It is important to note, 
however, that we only had the statistical power to test for 

a very large difference in DNAm age, and our 95% con-
fidence interval suggests that Nicoyan individuals could 
be up to 6  years younger in DNAm age. We calculated 
epigenetic age in our samples using three published 
DNAm age predictors and found no significant difference 
in these measures of biological age between Nicoyans 
and non-Nicoyans. Previous work found that peripheral 
blood mononuclear cells from the offspring of semi-super 
centenarians, in an Italian cohort, appear 5.1 years epige-
netically younger than controls. Centenarians also were 
reportedly 8.6 years younger than their chronological age 
[33]. This is consistent with our population; when we col-
lapsed the Nicoyan and non-Nicoyan groups, we found 
centenarians were 12.7 years epigenetically younger. Fur-
thermore, all Costa Ricans were 6.9  years epigenetically 
younger than their chronological age. It is possible that 
this might reflect the recently reported epigenetically 
younger phenotype in Hispanic populations [34].

To examine age-associated DNAm variability, we 
assessed a measure of variance in Nicoyans and non-
Nicoyans independently. We were able to demonstrate 
the phenomenon of epigenetic drift within each of these 
groups, as our sample consisted of two age ranges in each 
group. Additionally, we observed that DNAm variation 
was lower in Nicoyans, both in the ≤80-year-old and in the 
>80-year-old age groups, when compared to non-Nicoyans. 
Given that DNAm variability across individuals has been 
reported to increase with age, our finding may highlight an 
epigenetic characteristic of the longevity in Nicoyans [12]. 
Although the biological pre- and antecedents of increased 
DNAm variability are poorly understood, our findings 
suggest lower DNAm variability may be associated with 
lower mortality. Some explanations for this age-associated 
DNAm variability have been proposed, such that DNAm 
variability may result from a functional decline in DNAm 
maintenance machinery or that the variability is a product 
of environmental exposures over time [35].

We found 20 genomic regions and four single CpGs that 
were significantly differentially methylated between Nicoy-
ans and non-Nicoyans. One such DMR contained six 
CpGs and was located in the promoter region of NUDT12, 
a gene encoding a protein shown in vitro to cleave NADH, 
NADPH, and NAD+ [36]. Given that NUDT12 may play a 
role in NAD metabolism, a regulatory process associated 
with health span and aging, it is consistent with the fact 
that DNAm may be involved in the regulation of this gene 
that may have downstream effects on NAD biosynthe-
sis. Nicoyans had a lower level of DNAm in the promoter 
region of NUDT12, a signature often associated with 
higher gene expression. In addition to our DMR findings, 
we also found four individual sites to be both statistically 
and biologically significant, three of which existed in inter-
genic regions. We further investigated three of these CpGs 
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by quantifying DNAm with pyrosequencing, allowing us 
to verify both the accuracy of the 450k array and the sig-
nificant differences between Nicoyans and non-Nicoyans. 
However, it remains unclear whether differential DNAm 
of these single CpGs or DMRs, at the observed effect sizes 
(<10%), are sufficient to yield a biological change. Inter-
pretation of these findings at a biological level will require 
future mechanistic experiments.

Our findings should be interpreted within the context 
of several limitations. One limitation was the lack of gen-
otype information for these samples, as genetic variation 
is considerably associated with DNAm [37]. In order to 
reduce genetic heterogeneity, we restricted control sam-
pling to areas within Costa Rica, but outside of Nicoya. 
Nicoyan status is determined as of the time of the survey, 
i.e., at older ages, not based on birth or life-course resi-
dence, but in our sample 44 out of 48 Nicoyan residents 
have lived there their entire lives. While there are no docu-
mented differences between the historical migration pat-
terns of the inhabitants of Nicoya and the rest of Costa 
Rica, minor differences may exist. Therefore, we imple-
mented a recently published tool to infer genetic informa-
tion using DNAm data obtained from the 450k array called 
‘Epistructure,’ a tool from the python package GLINT [28]. 
We found no significant difference in population structure 
measures between Nicoyans and non-Nicoyans and thus 
did not include these composite measures in our analy-
ses. Another consideration of our study results is that we 
used a bioinformatics approach to predict CD8+ T cell 
proportions, which are relative compositional estimates. 
As these predictions do not estimate actual cell counts, 
the abundance of other cell types will affect the propor-
tional estimate of the CD8+ T cells. Ideally, we will need 
to validate our findings using a quantitative approach, 
such as fluorescent-activated cell sorting, to obtain actual 
cell counts. We note, perhaps not surprisingly, that we did 
not observe a significant difference when we performed 
an overall compositional analysis of these predictions [38], 
meaning that the blood composition overall was not dif-
ferent between Nicoyans and non-Nicoyans. However, our 
findings are supported by using two separate reference-
based approaches [6, 14], both of which identified CD8+ T 
cells as being significantly different between Nicoyans and 
non-Nicoyans. Furthermore, these bioinformatic cell-type 
proportion predictions have been well validated in the lit-
erature when compared to actual cell counts, and so we 
were confident that this approach reflected true cell-type 
proportions [16].

Conclusions
Our findings thus highlight DNAm as a potential fac-
tor underlying the unique longevity observed in Nicoya 
region of Costa Rica. This work also supports the 

demographic data on longevity as characterizing this 
population as unique. The specific differences in immune 
cell proportions we observed in Nicoyans will lay the 
framework for a validation study to observe whether 
cell-sorting experiments yield similar results. Addition-
ally, the differential DNAm findings may provide a candi-
date list of CpGs to test for differences in other longevity 
populations. Lastly, upon validating our findings, our 
work will contribute to narrowing the focus of mechanis-
tic studies to assess whether the DNAm differences we 
observed are involved in gene regulation that may alter 
gene expression trajectories.

Methods
Sample preparation and data collection
Whole blood was collected from participants and 
genomic DNA was extracted at the University of Costa 
Rica from 2 ml of frozen whole blood using the phenol–
chloroform method. DNA was bisulfite converted with 
the Zymo Research EZ DNA Methylation™ Kit (Irvine, 
CA, USA). Approximately 160  ng of bisulfite-converted 
DNA from each sample, with the addition of one tech-
nical replicate, was randomized across eight 450k array 
BeadChips as well as sentrix row and run in one batch 
according to the manufacturer’s protocol (San Diego, CA, 
USA).

Qiagen Pyromark Assay Design 2.0 software (Hilden, 
Germany) was used to generate pyrosequencing assays 
targeted to three 450k array CpGs. Pyrosequencing was 
performed on the a Qiagen Pyromark™ Q96 (Hilden, 
Germany) according to manufacturer’s instructions. All 
primer sequences are listed in Additional file 6: Table S1.

Data preprocessing and normalization
Illumina GenomeStudio software (San Diego, CA, USA) 
was used to subtract background noise and color correct 
raw data using control probes. Data were extracted in the 
form of an average β value matrix and imported into R 
Statistical software for the remainder of data processing. 
Logit-transformed β values to M values, a less heterosce-
dastic value, were used for all statistical analyses, whereas 
β values were used for visualization purposes as they rep-
resent percent methylation (0 = no methylation, 1 = fully 
methylated). We have included a comparison table of β 
values compared to M values for CpGs identified in the 
site-specific differential methylation analysis (Additional 
file 7: Table S2).

All data processing and statistical analyses were imple-
mented in R version 3.2.3. We removed a subset of probes 
that could potentially lead to erroneous results. These 
consisted of 65 SNP control probes, probes that were 
specific to either the X or Y sex chromosomes, probes 
with missing β values or with a detection p ≥  0.01 in 5 
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or more samples, polymorphic CpG probes, and cross-
hybridizing XY probes. The total number of probes post-
filtering based on these criteria was 441,109 [25]. No 
sample outliers were removed, defined as having more 
than 5% of their total probes fail.

Subset-quantile within array normalization (SWAN) 
was used to account for type I and II probe differences 
on the 450k array [39]. Known technical variation (sen-
trix ID and position) was accounted for with the func-
tion ‘ComBat’ [40]. Confirmation of these corrections 
was assessed before and after using principal component 
analysis.

Estimation of blood cell proportions
A validated cellular deconvolution method was used 
to estimate cell-type proportions in each blood sample, 
namely CD4+ and CD8+ T cells, natural killer cells, B 
cells, monocytes and granulocytes [16]. The predicted 
abundance levels of CD8+ T naïve and CD8+ T memory 
were obtained from the ‘Advanced Blood Analysis’ of the 
online DNAm age predictor [6]. Significance values were 
generated from performing a Kruskal–Wallis test for 
each cell-type proportion by group.

Prediction of epigenetic age
Three epigenetic clocks were used to predict biological 
age. The ‘Horvath’ and ‘Hannum’ estimates were computed 
with the online epigenetic clock software [6, 7]. The ‘Wei-
dner’ age prediction was generated using the previously 
described 99 CpG model [41]. We investigated, to the best 
of our ability, the possibility that this finding was due to 
a global batch effect influencing all samples by perform-
ing the DNAm age calculation on raw data, after SWAN 
normalization data, and again after ComBat correction. 
In all cases, the mean DNAm age for all Costa Ricans was 
younger than the mean chronological age. We chose to 
proceed with calculating DNAm age using the most cor-
rected data as we expected data that is corrected for tech-
nical batch effects, inclusive of probe design and chip–chip 
variance, to best represent true biological signal.

DNA methylation analysis
The R package ‘DMRcate’ was used to find DMRs [42]. 
The DMRcate model contained Nicoya group, chrono-
logical age, sex, and estimated cell-type proportions. This 
tool uses a Gaussian kernel smoothing of DNAm across 
the genome. Benjamini–Hochberg (BH) method was 
applied with a threshold of ≤ 0.05 and a β value differ-
ence of ≥ 5% [43].

Site-specific differential DNAm analysis was con-
ducted using moderated t-statistics with empirical 
Bayesian variation estimation using the bioconductor R 
package ‘limma’ with chronological age, sex, and cell-type 

proportions as covariates [44]. M values consisted of log-
transformed β values to achieve a measure with uniform 
variation and decreased heteroscedasticity. Significance 
values were corrected for multiple testing using the BH 
method [43].

DNAm variability was calculated using the interquan-
tile range (IQR) across the 90th and 10th percentiles of 
each group, independently, at each CpG. A significance 
value was generated by performing a Wilcoxon signed-
rank test between groups.

Inferred genetic ancestry
Population structure was inferred using the ‘Epistructure’ 
command-line tool GLINT [28]. This method applies 
principal component analysis on a reference list of 
genetically informative 450k array probes. This tool sug-
gests the top two principal components can infer genetic 
structure. Linear regression was used for comparison of 
each PC and group status, while adjusting for sex, cell-
type proportions, and age.

Additional files

Additional file 1: Figure S1. Correlation plot of DNA methylation‑based 
estimated blood cell‑type proportions. Colored blocks represent cor‑
relation p values below 0.05, red indicates negative correlation and blue 
indicates positive correlation. Gran = granulocyte, Mono = monocyte, 
NK = natural killer.

Additional file 2: Figure S2. EEAA (extrinsic epigenetic age accelera‑
tion), General Age Acceleration (residuals from a linear model of DNAm 
age regressed onto chronological age), IEAA (intrinsic age acceleration). 
All measures were generated from the online epigenetic age software. No 
significant differences were observed between Nicoyans (blue) and non‑
Nicoyans (red). Significant values generated from ANOVA statistical tests.

Additional file 3: Figure S3. Continuation of differentially methylated 
regions between Nicoyans and non‑Nicoyans. Remaining 14 of the 20 
statistically significant DMRs obtained from DMRcate analysis found by 
the R package ‘DMRcate.’ Unadjusted DNA methylation values, shown 
as percent of cells methylated, are displayed on the y‑axis, and genomic 
distance (bp) to the TSS is plotted on the × axis. Associated genes are 
based on closest distance to the TSS of each differentially methylation 
region. Nicoyans are represented by blue points with the mean of each 
CpG site illustrated by a blue line. Non‑Nicoyans are represented with red 
with each point indicating an individual, with the red line illustrating the 
mean at each CpG.

Additional file 4: Figure S4. QQ plots of each identified CpG modeled 
using M values or β values. Linear model included DNA methylation value 
regressed on group (Nicoya vs non‑Nicoya) with sex, age, and estimated 
cell‑type proportions included as covariates.

Additional file 5: Figure S5. Epistructure‑derived principal component 
analysis. Genetically informative 450k array sites were used to estimate 
genetic population structure in our data. Principal component analysis 
was performed on a reference CpG list to generate measures (PCs) of 
genetic structure. No significant difference in these estimates was seen 
between Nicoyans and non‑Nicoyans.

Additional file 6: Table S1. Pyrosequencing primer sequences designed 
with Qiagen Pyromark Assay Design 2.0 software.

Additional file 7: Table S2. Comparison of M values and β values of 
each identified CpG.
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