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MS_HistoneDB, a manually curated 
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Abstract 

Background: Histones and histone variants are essential components of the nuclear chromatin. While mass spec-
trometry has opened a large window to their characterization and functional studies, their identification from prot-
eomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public data-
bases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, 
no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants.

Results: We propose two proteomics-oriented manually curated databases for mouse and human histone variants. 
We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 
85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the 
“HistoneDB2.0 with Variants” database. This resource is provided in a format that can be directly read by programs 
used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired 
on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or 
detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form.

Conclusions: Mouse and human histone entries were collected from different databases and subsequently curated 
to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of his-
tones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.
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Background
In eukaryotic cells, the nucleosome is the basic unit of 
chromatin organization. Nucleosomes are composed 
of an octamer of four core histones, H2A, H2B, H3 and 
H4, wrapped by DNA [1]. An additional linker histone, 
H1, can be deposited near the DNA entry–exit points 
[2, 3]. The dynamic organization of chromatin impacts 
many cellular events, including the regulation of gene 
transcription, DNA replication and the maintenance 
of genome integrity through DNA repair mechanisms 
[4, 5]. These pathways signal to chromatin by different 

mechanisms including DNA methylation, non-coding 
regulatory RNAs, recruitment of remodelling factors, 
incorporation of histone variants and covalent modifica-
tions of histones [6–12]. Histones are decorated by many 
post-translational modifications, the most common of 
which are acetylation, methylation, phosphorylation 
and ubiquitination [13, 14]. Some of these modifications 
favour transcription activation, while others are asso-
ciated with repression of transcription [15]. In addi-
tion to transcription, histone modifications are involved 
in numerous regulatory circuits, such as chromosome 
dynamics [16], DNA repair [17] or the establishment 
and maintenance of heterochromatin [18]. Furthermore, 
dedicated molecular machineries can load and mobilize 
nucleosomes along the DNA (for review, see [4]). These 
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chromatin remodellers play an important role in the reg-
ulation of transcription by organizing the nucleosomal 
positions at critical regulatory regions [19, 20]. Finally, 
non-allelic variants of canonical histones, named histone 
variants, are important elements in chromatin signalling 
pathways [21, 22]. Some variants are general players—
expressed ubiquitously, contributing to various aspects 
of transcription and epigenetic regulations—while others 
are only expressed in certain cell types, such as germ cells 
[23]. Some of these variants are specifically expressed 
during sperm differentiation and are annotated TS for 
testis-specific [24–26]. Altogether, histone variants have 
been described for H3, H2A, H2B and H1; H4 is the only 
histone for which no variant has been identified in mam-
mals, but some organisms, such as the urochordate Oiko-
pleura dioica, ciliates and trypanosomes, have evolved 
H4 variants [10, 27–29].

Histone variants were initially discovered using classi-
cal biochemical approaches. Recently, the development 
of mass spectrometry (MS) techniques, with constant 
increases in sensitivity and speed of analysis, has facili-
tated their identification and functional characterization 
[14, 30–34]. In order to utilize these technologies, his-
tones are first biochemically enriched taking advantage of 
their highly basic nature. Then, they are proteolyzed with 
proteases to form short peptides, which are then ana-
lysed by MS/MS. The acquired MS/MS spectra are inter-
preted and converted into amino acid sequences, from 
which the identity of the original histone protein and the 
possible presence of post-translational modifications on 
specific residues can be determined [35]. However, these 
analyses still remain restricted for a number of reasons. 
One of these is that the interpretation of MS/MS spec-
tra relies on matching experimental data to theoretical 
peptide sequences obtained by an in silico proteolysis of 
a list of proteins. Therefore, the content of the theoretical 
protein sequence database conditions the interpretation 
of the experimental spectra and the subsequent identi-
fication of histones. Classical databases such as Swiss-
Prot, trEMBL and NCBI are usually used with success. 
However, histones have not been precisely annotated 
in these resources. Manually curated databases such as 
Swiss-Prot lack several histones, while others, such as 
trEMBL or NCBI protein database, are more extensively 
populated with non-reviewed data. The latter contain 
more histone entries, but the degree of redundancy and 
the precision of the descriptions can make protein iden-
tification results difficult to interpret. Finally, naming of 
histones has been recently revisited with a new unified 
nomenclature [36]. The recent release of HistoneDB 2.0 
consolidated the sequence information of a large variety 
of histones and their sequence variants in many organ-
isms [37]. However, it has not yet been integrated in the 

above databases and the same variant can go by differ-
ent names. For instance, the coding gene H2afb1 refers 
to proteins H2A.L.2 or H2A.Lap3 in the literature and 
to H2A-Bbd type 1 in the NCBI RefSeq and UniProtKB 
databases [38, 39]. In addition, a different protein coded 
by Gm14920 is also named H2A.Bbd.1 in other publica-
tions [40]. Here, a unified name is presented to identify 
uniquely each ambiguous entry and is also associated 
with its other names to facilitate its relationship with pre-
viously published work.

We have collected redundant histone entries from a 
number of public databases, gathering >700 entries for 
mouse and >1000 entries for human histones. We manu-
ally curated these lists to obtain a final count of 83 and 85 
histone entries for mouse or human, respectively. Their 
annotations have been revisited to match the current his-
tone nomenclature in accordance with the new resource 
“HistoneDB 2.0—with variants” [37]. About 30% of these 
entries have a fuzzy UniProtKB protein annotation, such 
as “predicted” or “inferred by homology”, and we per-
formed MS analysis to clearly identify several of these 
imprecisely characterized entries (some of which had for-
merly been described to be detected by western blot).

Results
MS_HistoneDB, a resource containing unique 
and non‑redundant histones
Our initial aim with this work was to generate an exhaus-
tive and non-redundant resource that would facilitate 
histone analysis by MS. We identified and collected all 
the information available on human and mouse his-
tones from the public databases of NCBI, Ensembl and 
UniProtKB (Table 1). This work was aided by the recent 
release of an updated version of the Histone Database, 
named “HistoneDB 2.0—with variants” [37]. This data-
base contains 38,664 entries from 1624 species, with 761 
and 1039 entries for mouse and human, respectively. In 
addition, several histones were also considered based on 
published articles [41–45].

The dataflow is presented in Fig.  1a. This curating 
process is exemplified with human H2A.Z on Fig.  1b. 
A total of 23 entries were collected from Swiss-Prot, 
Uniprot-trEMBL and NCBI databases. Fourteen were 
duplicated and removed to obtain nine unique entries, 
which were annotated as H2A.Z.1 and eight spliced iso-
forms of H2A.Z.2 using the release R86 of the Ensembl 
database (Fig.  1c, d). In summary, the following rules 
were applied. First, each entry is protein-centric and 
therefore defined by the final product, a unique mature 
protein. Second, it must be associated with gene, tran-
script and protein accession numbers in NCBI and/or 
Ensembl, unless published data document its existence. 
Third, histone names are not always consistent within the 
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existing public databases. Some were renamed following 
the Talbert et  al. nomenclature and in agreement with 
the HistoneDB 2.0 resource as detailed in the following 
sections [36, 37]. The final list of histone entries is pre-
sented as a phylogenetic tree in Fig. 2 and in Tables 2 and 
3 for mouse and human species, respectively. We did not 
provide here an extensive review of the functional roles 
of each histone variant, which are already available else-
where [4, 21, 23, 36, 46].

Canonical histones
Canonical histones constitute the bulk of the proteins 
that organize DNA into chromatin. They are synthesized 
and incorporated into chromatin during replication [41]. 
Their expression is carefully regulated to provide enough 
proteins to be loaded onto newly synthesized DNA while 
preventing the accumulation of free histones [47, 48]. For 
this reason, they are denominated “replication-depend-
ent” and their mRNA adopts a unique organization (for 

Table 1 Histone entries in various publicly accessible databases

Mouse Human

NCBI HistoneDB 2.0 UniProtKB This study NCBI HistoneDB 2.0 UniProtKB This study

H1 170 26 16 126 14 12

H2A 238 44 37 313 44 35

H2B 121 19 16 239 32 21

H3 151 17 13 189 22 16

H4 81 4 1 172 4 1

Total 761 110 83 1039 1126 85

a

b
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Manual
curation

Data 
collection

Histone variants and spliced isoforms

HistoneDB 2.0

Ensembl

Literature exploration

Human H2A.Z (Genes H2afz & H2afv)

Redundant list
of histone variants
Mm >700 entries

Hs > 1,000 entries

Curated histone list
Mouse: 83 entries
Human: 85 entries

Annotation
Annotated
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Fig. 1 Methodology used to create a manually curated MS_HistoneDB resource. a Representation of the dataflow used to generate the MS_His-
toneDB resource. b Example of the dataflow for human H2A.Z histone variants. The number of entries at each step is indicated. c Graphical repre-
sentation of the exons of human H2A.Z.2 spliced isoforms. d Sequence alignment of human H2A.Z variant isoforms
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Fig. 2 Phylogenetic trees for mouse and human histone entries in MS_HistoneDB. Please note that for clarity, some putative spliced isoforms of 
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Page 5 of 18El Kennani et al. Epigenetics & Chromatin  (2017) 10:2 

Table 2 Manually curated list of mouse histones

Histone Protein name Entry name for MS analysis Gene name UniProtKB References

H1 H1.1 H1.1 Hist1h1a P43275 [41, 91]

H1.2 H1.2 Hist1h1c P15864 [41, 92]

H1.3 H1.3 Hist1h1d P43277 [41]

H1.4 H1.4 Hist1h1e P43274 [41]

H1.5 H1.5 Hist1h1b P43276 [41]

H1.0 (H1°) H1.0 (H1°) H1f0 P10922 [93]

TS H1.6 (H1T) TS H1.6 (H1T) Hist1h1t Q07133 [54]

TS H1.7 (H1T2, HANP1) TS H1.7 (H1T2, HANP1) H1fnt Q8CJI4 [55, 56]

OO H1.8 (H1oo) OO H1.8.s1 (H1oo) H1foo Q8VIK3 [59]

OO H1.8.s2 H1foo Q8VIK3-2 [60]

OO H1.8.s3 (putative spliced isoform) H1foo E0CZ52 *

OO H1.8.s4 (putative spliced isoform) H1foo E0CYL2 Short**

OO H1.8.s5 (putative spliced isoform) H1foo A0A0N4SV54 Short*

TS H1.9 (HILS1) TS H1.9 (HILS1) Hils1 Q9QYL0 [57, 58]

H1.10 H1.10 H1fx Q80ZM5 *

H1.11 H1.11 gene: Gm6970 Gm6970 F7DCP6 *

H2A Canonical H2A Canonical H2A genes: Hist1h2ab, Hist1h2ac, Hist1h2ad, Hist1h2ae, 
Hist1h2ag, Hist1h2ai, Hist1h2an, Hist1h2ao, Hist1h2ap

Hist1h2ab P22752 [41]

Hist1h2ac P22752 [41]

Hist1h2ad P22752 [41]

Hist1h2ae P22752 [41]

Hist1h2ag P22752 [41]

Hist1h2ai P22752 [41]

Hist1h2an P22752 [41]

Hist1h2ao P22752 [41]

Hist1h2ap P22752 [41]

Canonical H2A gene: Hist1h2af Hist1h2af Q8CGP5 [41]

Canonical H2A gene: Hist1h2ah Hist1h2ah Q8CGP6 [41]

Canonical H2A gene: Hist1h2ak Hist1h2ak Q8CGP7 [41]

Canonical H2A gene: Hist1h2al Hist1h2al F8WIX8 *

Canonical H2A genes: Hist2h2aa1, Hist2h2aa2 Hist2h2aa1 Q6GSS7 [41]

Hist2h2aa2 Q6GSS7 [41]

Canonical H2A gene: Hist2h2ab Hist2h2ab Q64522 [41]

Canonical H2A gene: Hist2h2ac Hist2h2ac Q64523 [41]

Canonical H2A gene: Hist3h2a Hist3h2a Q8BFU2 [41]

H2A.J (putative variant) H2A.J.s1 (putative variant) H2afj Q8R1M2 *

H2A.J.s2 (putative variant, putative spliced isoform) H2afj A0A0N4SV66 *

H2A.X H2A.X H2afx P27661 [61, 62, 94]

H2A.Z.1 H2A.Z.1.s1 H2afz P0C0S6 [43]

H2A.Z.1.s2 (putative spliced isoform) H2afz Q3UA95 *

H2A.Z.1.s3 (putative spliced isoform) H2afz G3UWL7 Short*

H2A.Z.1.s4 (putative spliced isoform) H2afz G3UX40 Short**

H2A.Z.2 H2A.Z.2.s1 H2afv Q3THW5 [43]

H2A.Z.2.s2 (putative spliced isoform) H2afv Q8R029 Short*

Macro-H2A.1 Macro-H2A.1.s1 H2afy Q9QZQ8 [95]

Macro-H2A.1.s2 H2afy Q9QZQ8-2 [45]

Macro-H2A.2 Macro-H2A.2 H2afy2 Q8CCK0 [96, 97]

Macro-H2A.3 Macro-H2A.3 (pseudogene) gene: H2afy3 H2afy3 Q9D3V6 ***

TS H2A.1 TS H2A.1 (TH2A) Hist1h2aa Q8CGP4 [41]

H2A.L.1 (H2A.Lap2) H2A.L.1 (H2A.Lap2) genes: H2al1a, GH2al1c,H2al1d, H2al1f,H2al1g, 
H2al1h,H2al1i

H2al1a Q5M8Q2 [38, 39]

H2al1c Q5M8Q2 [38, 39]

H2al1d Q5M8Q2 [38, 39]
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Table 2 continued

Histone Protein name Entry name for MS analysis Gene name UniProtKB References

H2al1f Q5M8Q2 [38, 39]

H2al1g Q5M8Q2 [38, 39]

H2al1h Q5M8Q2 [38, 39]

H2al1i Q5M8Q2 [38, 39]

H2A.L.1 gene: H2al1b H2al1b A0A087WP11 *

H2A.L.1 gene: H2al1e H2al1e Q810S6 *

H2A.L.1 gene: H2al1j H2al1j A2BFR3 *

H2A.L.1 gene: H2al1k H2al1k J3QP08 *

H2A.L.1 gene: H2al1m H2al1m Q9DAD9 *

H2A.L.1 gene: H2al1n H2al1n Q497L1 *

H2A.L.1 gene: H2al1o H2al1o L7MU04 *

H2A.L.2 (H2A.Lap3, H2A.B.1) H2A.L.2 (H2A.Lap3, H2A.B.1) gene: H2afb1 H2afb1 Q9CQ70 [38, 39]

Y-chr H2A.L.3 Y-chr H2A.L.3 genes: H2al2b, H2al2c H2al2b A9Z055 [98]

H2al2c A9Z055 [98]

H2A.P (H2A.L3, H2A.Lap4) H2A.P (H2A.L3, H2A.Lap4) gene: Hypm Hypm Q9CR04 [38, 39]

H2A.B.2 H2A.B.2 gene: H2afb2 H2afb2 S4R1M3 [40, 99]

H2A.B.3 H2A.B.3 gene: H2afb3 H2afb3 S4R1G7 [40, 99]

H2A.B.3 (H2A.Lap1) gene: Gm14920 Gm14920 S4R1E0 [39, 40, 99]

H2B Canonical H2B Canonical H2B gene: Hist1h2bb Hist1h2bb Q64475 [41]

Canonical H2B genes: Hist1h2bc, Hist1h2be, Hist1h2bg Hist1h2bc Q6ZWY9 [41]

Hist1h2be Q6ZWY9 [41]

Hist1h2bg Q6ZWY9 [41]

Canonical H2B genes: Hist1h2bf, Hist1h2bj, Hist1h2bl, Hist1h2bn, 
Hist1h2bq, Hist1h2br

Hist1h2bf P10853 [41]

Hist1h2bj P10853 [41]

Hist1h2bl P10853 [41]

Hist1h2bn P10853 [41]

Hist1h2bq P10853 [41]

Hist1h2br P10853 [41]

Canonical H2B genes: Hist1h2bq, Hist1h2br (putative spliced isoform) Hist1h2bq Q8CBB6 *

Hist1h2br Q8CBB6 *

Canonical H2B gene: Hist1h2bh Hist1h2bh Q64478 [41]

Canonical H2B gene: Hist1h2bk Hist1h2bk Q8CGP1 [41]

Canonical H2B gene: Hist1h2bm Hist1h2bm P10854 [41]

Canonical H2B gene: Hist1h2bp Spliced isoform 1 (main) Hist1h2bp Q8CGP2 [41]

Canonical H2B gene: hist1h2bp (putative spliced isoform) Hist1h2bp Q8CGP2-2 [41]

Canonical H2B gene: Hist2h2bb Hist2h2bb Q64525 [41]

Canonical H2B gene: Hist2h2be Hist2h2be Q64524 [41]

Canonical H2B gene: Hist3h2ba Hist3h2ba Q9D2U9 [41]

Canonical H2B gene: Hist3h2bb Hist3h2bb Q8CGP0 *

TS H2B.1 (TH2B) TS H2B.1 (TH2B) Hist1h2ba P70696 [41, 79]

subH2B (H2BL.1) subH2B (H2BL.1) 1700024p04rik Q9D9Z7 [38, 100]

H2B.L.2 H2B.L.2 H2bfm Q9DAB5 [38]

H3 Canonical H3.1 Canonical H3.1 Hist1h3a P68433 [41]

Hist1h3g P68433 [41]

Hist1h3h P68433 [41]

Hist1h3i P68433 [41]

Canonical H3.2 Canonical H3.2 Hist1h3b P84228 [41]

Hist1h3c P84228 [41]

Hist1h3d P84228 [41]

Hist1h3e P84228 [41]

Hist1h3f P84228 [41]

Hist2h3b P84228 [41]
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review, see [49]). They are the only RNA polymerase II 
transcripts which are not polyadenylated but instead 
possess a 3′ stem-loop, formed during the maturation of 
their mRNA and which is essential for their regulation 
[49]. However, polyadenylation events of replication-
dependent histone mRNA have recently been identified 
in terminally differentiated cells and suggested to provide 
a replacement pool of canonical histones [50].

H2A and H2B canonical histones have minor sequence 
variations, and it is not clear yet whether these have a 
functional significance [51]. MS analysis can differenti-
ate between these isoforms and their denomination had 
to be adapted for proteomic analysis. Here, we propose 
that canonical H2A and H2B isoforms can be regrouped 

under the generic term “canonical H2A” or “canonical 
H2B”, complemented by the gene name of each isoform 
(Tables 2, 3).

Histone variants are mostly replication‑independent
In contrast to canonical histones, almost all histone var-
iants are synthesized independently of the cell cycle and 
named “replication-independent” [49]. Their mRNA is 
polyadenylated and these histones are incorporated into 
chromatin at any time of the cell cycle. Two exceptions 
are the testis-specific (TS) histone variants TS H2A and 
TS H2B, which possess a 3′ stem-loop in their mRNA. 
For this reason, they have been classified as replica-
tion-dependent [49] even if expressed in differentiating 

Table 2 continued

Histone Protein name Entry name for MS analysis Gene name UniProtKB References

Hist2h3c1 P84228 [41]

Hist2h3c2 P84228 [41]

H3.3 H3.3 genes: H3f3a, H3f3b H3f3a P84244 [101, 102]

H3f3b P84244 [101, 102]

H3.3 gene: Gm6421 Gm6421 EDL18362.1 [103]

H3.3 gene: Gm10257 Gm10257 XP_003084990.1 [103]

cenH3-CENPA cenH3-CENPA.s1 Cenpa O35216 [104]

cenH3-CENPA.s2 (putative spliced isoform) Cenpa D6RCV6 Short**

cenH3-CENPA.s3 (putative spliced isoform) Cenpa D6RJ71 **

cenH3-CENPA.s4 (putative spliced isoform) Cenpa A0A0G2JEV0 *

cenH3-CENPA.s5 (putative spliced isoform) Cenpa A0A0G2JGI2 *

cenH3-CENPA.s6 (putative spliced isoform) Cenpa A0A0G2JEV2 **

H3.5 H3.5 H3f3c P02301 ***

TS H3.4 (H3T) TS H3.4 (H3T) Gm12260 NP_001304932.1 [74]

H4 H4 H4 Hist1h4a P62806 [41, 105]

Hist1h4b P62806 [41, 105]

Hist1h4c P62806 [41, 105]

Hist1h4d P62806 [41, 105]

Hist1h4f P62806 [41, 105]

Hist1h4h P62806 [41, 105]

Hist1h4i P62806 [41, 105]

Hist1h4j P62806 [41, 105]

Hist1h4k P62806 [41, 105]

Hist1h4m P62806 [41, 105]

Hist1h4n P62806 [41, 105]

Hist2h4 P62806 [41, 105]

Hist4h4 P62806 [41, 105]

Their protein names have been adapted to improve their identification and analysis by mass spectrometry. Indeed, the column “Entry name for MS analysis” represents 
the information present in the FASTA file (Additional file 1) used as a database to identify peptides and proteins after an MS analysis. The last column indicates studies 
on histones that described evidence of transcript and/or protein existence. For the sake of completeness, histone entries lacking a related publication were retained 
and the classification currently proposed by the Ensembl database was specified, as follows

* “Protein coding”, genes and/or transcript that contains an open reading frame (ORF)

** “Nonsense mediated decay”, transcript is thought to undergo nonsense mediated decay

*** “Pseudogene”, genes containing frameshift and/or stop codon(s) that disrupt the ORF

The term “Short” indicates that the putative protein is significantly smaller than conventional histones; its incorporation into chromatin and its biological function is 
then doubtful. Additional file 4 presents links to gene, transcripts and protein entries to Ensembl and UniProtKB databases
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Table 3 Manually curated list of human histones

Histone Protein name Entry name for MS analysis Gene name UniProtKB Accession References

H1 H1.1 H1.1 Hist1h1a Q02539 [41, 106, 107]

H1.2 H1.2 Hist1h1c P16403 [41, 106, 107]

H1.3 H1.3 Hist1h1d P16402 [41, 106, 107]

H1.4 H1.4 Hist1h1e P10412 [41]

H1.5 H1.5 Hist1h1b P16401 [41, 108]

H1.0 (H1°) H1.0 (H1°) H1f0 P07305 [109]

TS H1.6 (H1t) TS H1.6 (H1t) Hist1h1t P22492 [41]

TS H1.7 (H1T2, HANP1) TS H1.7 (H1T2, HANP1) H1fnt Q75WM6 [110]

OO H1.8 (H1oo) OO H1.8.s1 (H1oo) H1foo Q8IZA3-1 [111, 112]

OO H1.8.s2 (putative spliced isoform) H1foo Q8IZA3-2 *

TS H1.9 (Hils) TS H1.9 (Hils) Hils1 P60008 [57]

H1.10 H1.10 H1fx Q92522 [113]

H2A Canonical H2A Canonical H2A genes: Hist1h2ag, Hist1h2ai, 
Hist1h2ak, Hist1h2al, Hist1h2am

Hist1h2ag P0C0S8 [41]

Hist1h2ai P0C0S8 [41]

Hist1h2ak P0C0S8 [41]

Hist1h2al P0C0S8 [41]

Hist1h2am P0C0S8 [41]

Canonical H2A gene: Hist1h2ac Hist1h2ac Q93077 [41]

Canonical H2A gene: Hist1h2ad Hist1h2ad P20671 [41]

Canonical H2A gene: Hist1h2ae Hist1h2ae P04908 [41]

Canonical H2A gene: Hist1h2ah Hist1h2ah Q96KK5 [41]

Canonical H2A gene: Hist1h2aj Hist1h2aj Q99878 [41]

Canonical H2A gene:Hist2h2aa4 Hist1h2aa4 Q6FI13 [41]

Canonical H2A gene: Hist2h2ab Hist2h2ab Q8IUE6 [41]

Canonical H2A gene: Hist2h2ac Hist2h2ac Q16777 [41]

Canonical H2A gene: Hist3h2a Hist3h2a Q7L7L0 [41]

Canonical H2A (pseudogene) Hist1h2Aps4 Q92646 ***

H2A.J (putative variant) H2A.J.s1 H2afj Q9BTM1-1 **

H2A.J.s2 (putative spliced isoform) H2afj Q9BTM1-2 **

H2A.J.s3 (putative spliced isoform) H2afj H0YFX9 Short**

H2A.X H2A.X H2afx P16104 [61, 114]

H2A.Z.1 H2A.Z.1 H2afz P0C0S5 [115, 116]

H2A.Z.2 H2A.Z.2.s1 H2afv Q71UI9-1 [116]

H2A.Z.2.s2 H2afv Q71UI9-2 [65]

H2A.Z.2.s3 (putative spliced isoform) H2afv Q71UI9-4 [65]

H2A.Z.2.s4 (putative spliced isoform) H2afv Q71UI9-5 [65]

H2A.Z.2.s5 (putative spliced isoform) H2afv Q71UI9-3 [65]

H2A.Z.2.s6 (putative spliced isoform) H2afv C9J0D1 *

H2A.Z.2.s7 (putative spliced isoform) H2afv C9J386 Short*

H2A.Z.2.s8 (putative spliced isoform) H2afv E5RJU1 Short*

macroH2A.1 macroH2A.1.s1 H2afy O75367 [117]

macroH2A.1.s2 H2afy O75367-2 [66]

macroH2A.1.s3 (putative spliced isoform) H2afy B4DJC3 *

macroH2A.1.s4 (putative spliced isoform) H2afy D6RCF2 ***

macroH2A.1.s5 (putative spliced isoform) H2afy O75367-3 *

macroH2A.2 macroH2A.2.s1 H2afy2 Q9P0M6 [96, 97]

macroH2A.2.s2 (putative spliced isoform) H2afy2 Q5SQT3 *

TS H2A.1 (TH2A) TS H2A.1 (TH2A) Hist1h2aa Q96QV6 [71]

H2A.B.1 H2A.B.1 H2afb1 P0C5Y9 [118, 119]
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Table 3 continued

Histone Protein name Entry name for MS analysis Gene name UniProtKB Accession References

H2A.B.2 H2A.B.2 H2afb2 P0C5Z0 *

H2afb3

H2A.P H2A.P Hypm O75409 *

H2B Canonical H2B Canonical H2B gene: Hist1h2bb Hist1h2bb P33778 [41]

Canonical H2B genes: Hist1h2bc, Hist1h2be, 
Hist1h2bf, Hist1h2bg, Hist1h2bi

Hist1h2bc P62807 [41]

Hist1h2be P62807 [41]

Hist1h2bf P62807 [41]

Hist1h2bg P62807 [41]

Hist1h2bi P62807 [41]

Canonical H2B gene: Hist1h2bd Hist1h2bd P58876 [41]

Canonical H2B gene: Hist1h2bh Hist1h2bh Q93079 [41]

Canonical H2B gene: Hist1h2bj Hist1h2bj P06899 [41]

Canonical H2B gene: Hist1h2bj (putative spliced 
isoform)

Hist1h2bj U3KPT8 *

Canonical H2B gene: Hist1h2bk Hist1h2bk O60814 [41]

Canonical H2B gene: Hist1h2bl Hist1h2bl Q99880 [41]

Canonical H2B gene: Hist1h2bm Hist1h2bm Q99879 [41]

Canonical H2B gene: Hist1h2bn Hist1h2bn Q99877 [41]

Canonical H2B gene: Hist1h2bn (putative spliced 
isoform)

Hist1h2bn U3KQK0 [41]

Canonical H2B gene: Hist1h2bo Hist1h2bo P23527 [41]

Canonical H2B gene: Hist2h2be Hist2h2be Q16778 [41]

Canonical H2B gene: Hist2h2bf (putative spliced 
isoform)

Hist2h2bf Q5QNW6 *

Canonical H2B gene: Hist2h2bf (putative spliced 
isoform)

Hist2h2bf Q5QNW6-2 *

Canonical H2B gene: Hist3h2bb Hist3h2bb Q8N257 [41]

H2B.S (putative variant) H2B.S (putative variant) H2bfs P57053 *

H2B.M (putative vari-
ant)

H2B.M.s1 (putative variant) H2bfm P0C1H6 *

H2B.M.s2 (putative variant, putative spliced isoform) H2bfm A9UJN3 Short*

H2B.W H2B.W H2bfwt Q7Z2G1 [72, 120, 121]

TS H2B.1 (TH2B) TS H2B.1 (TH2B) Hist1h2ba Q96A08 [41, 71]

H3 Canonical H3.1 Canonical H3.1 genes: Hist1h3a, Hist1h3b, Hist1h3c, 
Hist1h3d, Hist1h3e, Hist1h3f, Hist1h3g, Hist1h3h, 
Hist1h3i, Hist1h3j

Hist1h3a P68431 [41]

Hist1h3b P68431 [41]

Hist1h3c P68431 [41]

Hist1h3d P68431 [41]

Hist1h3e P68431 [41]

Hist1h3f P68431 [41]

Hist1h3g P68431 [41]

Hist1h3h P68431 [41]

Hist1h3i P68431 [41]

Hist1h3j P68431 [41]

Canonical H3.2 Canonical H3.2 genes: Hist2h3a, Hist2h3c, Hist2h3d Hist2h3a Q71DI3 [41]

Hist2h3c Q71DI3 [41]

Hist2h3d Q71DI3 [41]

Canonical H3.2 (pseudogene) Hist2h3ps2 Q5TEC6 *
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germ cells which replicate their DNA only once before 
meiosis.

Spliced and putative isoforms
More than 40 spliced isoforms for all mouse and human 
histones are present in the Ensembl database. However, 
this information, mainly based on transcriptional data, 
remains questionable; notably whether the correspond-
ing proteins are expressed and incorporated into chro-
matin is uncertain. Some spliced isoforms correspond to 
very short isoforms that lack the globular domain and are 
probably, if expressed, non-functional (mouse: cenH3-
CENPA.s2, cenH3-CENPA.s3, cenH3-CENPA.s4, cenH3-
CENPA.s5, OO H1.8.s.4, OO H1.8.s.5, H2A.Z.1.s3, 
H2A.Z.1.s4, H2A.Z.2.s2; human: H2A.J.s3, H2A.Z.2.s7, 
H2A.Z.2.s8, canonical H2B.s2, cenH3-CENPA.s2). Even 

though their expression remains highly uncertain, they 
have been included in MS_HistoneDB for their identifi-
cation by MS to be possible. Observing the presence of 
a shorter non-functional sequence at the expense of the 
full-length histone would indeed constitute interesting 
information. Following the same rationale, several puta-
tive isoforms or pseudogenes have been included in this 
resource (Tables 2, 3). Their detection by MS will consti-
tute an indispensable step to confirm the expression of 
their protein form.

H1 histones
H1 histones (or linker histones) are different from core 
histones with respect to their structure, function and 
evolution. Therefore, it is not possible to single out one 
of its isoforms as canonical. H1 variants are known to 

Table 3 continued

Histone Protein name Entry name for MS analysis Gene name UniProtKB Accession References

H3.3 H3.3.s1 H3f3a P84243 [122, 123]

H3f3b P84243 [122, 123]

H3.3.s2 (putative spliced isoform) H3f3a B4DEB1 *

H3f3b B4DEB1 *

H3.3.s3 (putative spliced isoform) H3f3b K7EK07 *

H3.3.s4 (putative spliced isoform) H3f3b K7EMV3 *

H3.3.s5 (putative spliced isoform) H3f3b K7EP01 *

H3.3.s6 (putative spliced isoform) H3f3b K7ES00 *

H3.Y.1 H3.Y.1 H3.Y Translated from NG_012784.2 [44]

H3.Y.2 (H3.X) H3.Y.2 (H3.X) H3.X Translated from NG_023411.2 [44]

H3.5 H3.5 H3f3c Q6NXT2 [75]

cenH3-CENPA cenH3 - CENPA Cenpa P49450-1 [124]

cenH3.s1 (putative spliced isoform) Cenpa P49450-2 *

cenH3.s2 (putative spliced isoform) Cenpa F8WD88 Short**

TS H3.4 (H3t) TS H3.4 (H3t) Hist3h3 Q16695 [41]

H4 H4 H4 Hist1h4a P62805 [41]

Hist1h4b P62805 [41]

Hist1h4c P62805 [41]

Hist1h4d P62805 [41]

Hist1h4e P62805 [41]

Hist1h4f P62805 [41]

Hist1h4h P62805 [41]

Hist1h4i P62805 [41]

Hist1h4j P62805 [41]

Hist1h4k P62805 [41]

Hist1h4l P62805 [41]

Hist2h4a P62805 [41]

Hist2h4b P62805 [41]

Hist4h4 P62805 [41]

Please refer to the Table 2 for legend. The corresponding FASTA file is presented as Additional file 2. Additional file 5 presents links to gene, transcripts and protein 
entries to Ensembl and UniProtKB databases
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encompass isoforms named H1.0–H1.10. H1.1–H1.5 
from histone gene cluster 1 and orphan genes H1.0 (H1°) 
and H1.10 are usually referred to as somatic variants [36]. 
The linker variant H1.0 has been described to be involved 
in cell differentiation (for review [2, 52]). H1.10 has been 
identified in human and plays an essential role for mitotic 
progression [53]. H1 variants also include the TS proteins 
TS H1.6 [54], TS H1.7 [55, 56], TS H1.9 [57, 58] and the 
oocyte-specific OO H1.8 variant [59, 60]. Finally, a new 
mouse entry, H1.11, was identified here while performing 
an in silico search using sequence alignments.

H2A variants
H2A variants comprise H2A.X, H2A.Z, macro-H2A and 
a number of TS variants, TS H2A, H2A.L/H2A.P and 
H2A.B.

Only one H2A.X protein has been described; this variant 
is involved in double-strand break repair, genome stability 
and chromatin remodelling and silencing in male meiosis 
[61–64]. H2A.Z is involved in transcription regulation and 
is encoded by two different genes, H2afz and H2afv [43]. 
In mouse, four putative spliced isoforms may be expected 
in addition to the two original sequences, while in human 
eight H2A.Z.2 isoforms have been suggested, of which two 
have been demonstrated to be stable at the protein level 
[65]. The specific functional roles of these isoforms are not 
well understood yet, but in some specific tissues, such as 
in the brain, some H2A.Z spliced isoforms could provide 
context-specific signalling information [65].

Macro-H2A is the largest histone variant with a long 
C-terminal domain [66]. This histone variant is asso-
ciated with transcription repression, although recent 
evidence suggests that in some conditions it may also 
promote transcription (reviewed in [51]). Macro-H2A is 
known to be encoded by two or three different genes, for 
human and mouse, respectively, some of which are dif-
ferentially spliced. These variable forms allow differential 
binding of NAD [67].

Finally, many H2A variants are specifically expressed 
in the testis. First, TS H2A.1 was originally identified in 
1982 in the testis, where it plays an important role and 
was later detected in the ovary [41, 68–71].

Fourteen other mouse TS H2A variants have been 
grouped into three main classes, H2A.L, H2A.B and 
H2A.P (Fig.  3). This class also regroups human vari-
ants, with two H2A.B and one H2A.P proteins (Fig.  3). 
They are involved in transcription regulation and the 
final chromatin reorganization during post-meiotic dif-
ferentiation of sperm cells [26, 38, 39]. The mouse vari-
ants have been described by different research groups 
[38, 39], and a denomination used here follows previous 
publications [36, 37]. When potential protein products 
of different genes have only minor sequence variations 

and no functional difference has been characterized, we 
grouped them under the name with the same number 
suffix (e.g. H2A.L.1); however, the gene name is provided 
in the name of the entry as the second qualifier. Future 
studies might warrant splitting of such groups of pro-
teins if functional differences between the members are 
detected. Currently, H2A.B.2 and H2A.B.3 are proposed 
to be numbered following their gene name, i.e. H2AFB2 
and H2AFB3, respectively. In 2007, new TS H2A variants 
were identified and named H2AL1 and H2AL2. [38]. A 
few years later, these histones were independently iden-
tified and named H2A.Lap2 and H2A.Lap3, respectively 
[39]. This latter work also reported the identification and 
functional characterization of a third member baptized 
H2A.Lap1 which falls into H2A.B group and is proposed 
to be regrouped with the highly similar protein H2A.B.3. 
H2A.L.3 was originally identified by S. Khochbin’s group 
[38] and is the same as H2A.Lap4, also identified by D. 
Tremethick’s group [39]. However, it forms a separate 
phylogenetic clade in placental mammals and is named 
H2A.P here according to [36].

H2B variants
Variants TS H2B.1, H2B.L and H2B.W were first identi-
fied as TS. In the testes, these proteins are involved in the 
chromatin-to-protamine transition [38, 69, 72, 73]. Then, 
TS H2B.1 and TS H2A.1 were also identified in human 
oocytes, where they favour the generation of induced 
pluripotent cells [70, 71]. In human, some genes (e.g. 
H2BFM, H2BFS) still await characterization and have 
been denoted as putative variants in this work (Table 3).

H3 variants
H3 has several isoforms: H3.1 and H3.2 are replication-
dependent; H3.3 is considered to be a replication-inde-
pendent histone variant, while TS H3.4 and H3.5 are TS 
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H2A.P

H2A.Lap2

H2al1m

H2afb3

H2al1j

H2A.B.2
H2A.B.1

Mouse / human histones

H2al1o

Y-chr H2A.L.3

Fig. 3 Phylogenetic tree of the mouse and human H2A.L, H2A.B and 
H2A.P histone variants
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[74, 75]. Several new isoforms of H3.3 were included in 
the database developed here along with two other human 
H3 histone variants, H3.X and H3.Y [44].

CenH3/CENPA is a well-known centromeric H3 vari-
ant with many spliced isoforms. Its name has been the 
subject of heated discussion, which is out of the scope 
of our work [36, 76, 77]. We therefore propose to use 
both names, cenH3-CENPA, until a consensus has been 
reached by the community.

Generation of MS‑based databases
De novo MS data interpretation methods are naive and 
do not rely on pre-existing databases. However, MS data 
acquired on histones are generally matched to a data-
base containing all the protein sequences that could the-
oretically be found in the sample. Using this approach, a 
given histone protein cannot be identified if its sequence 

is not present in the database explored by the MS/MS 
data interpretation software. We used MS_HistoneDB 
to create a new search space dedicated to the analysis 
of histones. Basically, mouse or human non-redundant 
and well-annotated Swiss-Prot FASTA files were cleared 
of their histone sequences and then repopulated using 
MS_HistoneDB. This resource is included as Additional 
files 1 and 2, providing resources to study histones in 
mouse and human samples, respectively.

Identification of new histones in mouse
About 30% of the proteins in MS_HistoneDB have 
imprecise protein annotations in UniProtKB and are pre-
sented in Tables  4 and 5. These tables regroup histones 
that are annotated in the UniProtKB and NCBI databases 
as “inferred from homology” or “predicted”. Even though 
a certain number of these histones have already been 

Table 4 Mouse histone variants with poor annotation status in the UniProtKB database

The “protein status” was retrieved from UniProtKB: “Evidence at transcript level” (noted “Transcript”) or “Inferred from homology” (noted “Inferred”, update of July 2016). 
Three variants are predicted in NCBI database and are absent in UniProtKB. Information about the detection of some variants at the mRNA level (e.g. by RT-PCR) or at 
the protein level (e.g. by WB or MS) was further completed with publications and compared to the MS identification results obtained in the present study

NB northern blot, WB western blot, MS mass spectrometry

Names Accession number Protein status Method of detection References

This study (number 
of identified pep‑
tides)

Other MS‑based 
studies

Not MS‑based 
studies

H1.0 (H1°) P10922 Transcript Yes (5) Yes RT-PCR; WB [128]

TS H1.7 (H1T2, HANP1) Q8CJI4 Transcript Yes (6) NB; WB [55]

OO H1.8 (H1oo) Q8VIK3 Transcript WB [59, 60, 129]

H1.11 F7DCP6 Inferred

Macro-H2A.3 Q9D3V6 Transcript

H2A.L.1 gene: H2al1b A0A087WP11 Inferred Yes (1)

H2A.L.1 gene: H2al1j A2BFR3 Inferred

H2A.L.1 gene: H2al1 k J3QP08 Inferred

H2A.L.1 gene: H2al1 m Q9DAD9 Transcript

H2A.L.1 gene: H2al1n Q497L1 Transcript Yes (2)

H2A.L.1 gene: H2al1o L7MU04 Inferred

H2A.L.2 (H2A.B1,H2A.
Lap3)

Q9CQ70 Transcript Yes (3) Yes RT-PCR; NB; WB [38, 39, 125]

Y-chr H2A.L.3 A9Z055 Transcript RT-PCR [98]

H2A.P (H2A.L3,H2A.
Lap4,)

Q9CR04 Inferred RT-PCR [38, 39]

H2A.B.2 S4R1M3 Inferred RT-PCR; WB [40, 99]

H2A.B.3 gene: H2afb3 S4R1G7 Inferred RT-PCR; WB [40, 99]

H2A.B.3 (H2A.Lap1) 
gene: GM14920

S4R1E0 Inferred RT-PCR; WB [39, 40, 99]

H2B.L.2 Q9DAB5 Transcript Yes (4) Yes RT-PCR; WB [38]

H3.3 gene: GM6421 EDL18362.1 Predicted Yes (1) Yes RT-PCR [103]

H3.3 gene: GM10257 XP_003084990.1 Record removed Yes (1) RT-PCR [103]

CENPA-cenH3 O35216 Transcript Yes qPCR; WB [126, 127]

H3.5 P02301 Inferred RT-PCR

TS H3.4 (H3t) NP_001304932.1 Predicted Yes RT-PCR [103]
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described in publications, which provide clear evidence 
of their existence at mRNA and protein levels, they may 
not have been identified by MS yet. This could explain 
their poor annotation status in UniProtKB.

At the RNA level, almost all histone variants have 
been detected in the testis [38–40, 55, 57, 68, 78–81]. 
Moreover, the expression profile of the mouse H2A.L.1 
isoforms which are described in this study has been 
explored. RNA-seq data from nine mouse tissues have 
been obtained from a recently published dataset [82]. 
Expression data were available for 7 out of the 8 H2A.L.1 
mouse histone entries and confirm that all of them are 
mainly expressed in the testis, similarly to H2A.L.2 and 
H2A.P (Fig. 4a) [38, 39]. Gene expression profiles during 
spermatogenesis have been obtained from Ref. [83]. It 
also confirms that H2A.L.1 isoforms are expressed in the 
post-meiotic stage in spermatids, similarly to H2A.L.2 
and H2A.P (Figs. 3c, 4b) [38, 39].

We next decided to test whether MS_HistoneDB 
would allow the identification by MS of histone entries 
with imprecise protein annotation using mouse testis. 
Histones were purified from whole testis or from elon-
gating spermatids (Fig.  4c). Mass spectrometry analysis 
combined with MS_HistoneDB allowed identification of 
nine of these poorly annotated proteins (Table  4; Addi-
tional file  3). Each newly MS-identified variant was 
detected by 1–10 specific peptide sequences. The cur-
rent guidelines for the identification of previously unde-
tected human proteins (“missing proteins”) require the 
identification of two different peptide sequences of at 
least nine amino acids in length [84]. To stringently apply 
the same rules to validate new histone variants would be 
demanding, given the very high level of sequence homol-
ogy between some variants. However, out of the nine 
histone variants detected here for the first time at the 
protein level by MS-based approaches, six were identi-
fied with at least two non-overlapping peptides of length 
≥9 amino acids. Almost all the newly identified vari-
ants are TS. This analysis thus confirmed the existence 
of H2A.L.1 encoded by H2al1b in mouse testes (Fig. 4d). 

In addition, this analysis confirmed the existence of the 
histone variant H3.3 encoded by the gene Gm10257, for 
which a specific peptide has been identified, even if its 
corresponding NCBI protein record has been recently 
removed (XP_003084990.1).

Other variants may not be detectable by MS in our 
analysis. For example, a trypsin digestion does not gen-
erate any peptides distinguishing mouse H2al1k protein 
from highly homologous H2A.L.1 variants. Its specific 
detection would require a more extensive analytical 
work, e.g. using an alternative protease for protein sam-
ple processing, which is beyond the scope of the current 
work.

Conclusions
MS is a powerful technique to identify histones, their 
variants and their post-translational modifications but 
relies on databases with contradictory naming and exces-
sive redundancy. Here we exhaustively collected histone 
sequences for mouse and human and used manual cura-
tion to establish a protein-centric list, MS_HistoneDB, 
dedicated to the proteomic study of mouse and human 
histones. Histone variants whose protein status is uncer-
tain in UniProtKB and NCBI but whose protein existence 
has been established by experimental evidence described 
in the literature have been included. This work confirmed 
the expression of isoforms of previously identified TS his-
tone variants and allowed the detection of one H3.3 iso-
form whose status was so uncertain that its record had 
been deleted from the NCBI protein database. We hope 
that this resource will facilitate the study of histone vari-
ants, especially by MS, and their functional roles in phys-
iological and pathological contexts.

Methods
Phylogenetic tree representation
Multiple sequence alignments of mouse and human his-
tones were performed using Clustal Omega [85]. Tree 
data were downloaded in aln format and displayed with 
iTOLv3 [86].

Table 5 Human histone variants with poor annotation status in the UniProtKB database

The “protein status” was retrieved from UniProtKB: “Evidence at transcript level” (noted “Transcript”) or “Inferred from homology” (noted “Inferred”, update of July 2016). 
Information about the detection of some variants at the mRNA level (e.g. by RT-PCR) or at the protein level (e.g. by WB or MS) was further completed with publications

NB northern blot, WB western blot, MS mass spectrometry

Name (other names) Protein status Accession number Method of detection References

TS H1.6 (H1t) Transcript P22492 WB [41]

TS H1.7 (H1T2, HANP1) Transcript Q75WM6 NB; WB [110]

OO H1.8 (H1oo) Transcript Q8IZA3-1 RT-PCR [111, 112]

H2A.1.ps Inferred Q92646

H2A.B.1 (H2A.Bbd) Transcript P0C5Y9 WB [118, 119, 130]

H2A.B.2 (H2A.Bbd) Transcript P0C5Z0 WB [118, 119, 130]
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Analysis of RNA‑seq data
Tissue-specific expression data were obtained from 
Huntley et al. [82] through the Expression Atlas Reposi-
tory [87]. RNA-seq data at different stages of spermato-
genesis were obtained from da Cruz et al. [83]. Data were 
imported and treated in R using the pheatmap library 
(https://CRAN.R-project.org/package=pheatmap).

Purification of histones from mouse testis
Histones were extracted from two types of biological 
samples, namely whole testis and elongated spermatids, 
to maximize the number of histone variants identified 

at specific maturation stages of male germ cells. Pure 
fractions of spermatid nuclei were obtained by sonicat-
ing mouse testes, as previously described [38]. Histones 
were isolated from testis cells and spermatids using sul-
furic acid [38] or saline extraction [88]. They were then 
separated by SDS-PAGE, and proteins were visualized by 
Coomassie staining.

Sample preparation and analysis by MS
Histones were reduced and alkylated as described previ-
ously [89]. Histones were either derivatized with propi-
onic anhydride before and after in-gel trypsin digestion 
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Fig. 4 Mouse H2A.L, H2A.B and H2A.P isoforms are expressed in the post-meiotic stages of spermatogenesis. a Expression profile of a selection of 
H2A.L, H2A.B and H2A.P genes across mouse tissues. All of them are testis-specific. Data were extracted using gene names provided in Table 2 and 
Additional file 4 from a dataset downloaded from Expression Atlas [87] and published in Ref. [82]. b Expression profiles of a selection of H2A.L, H2A.B 
and H2A.P genes during mouse spermatogenesis, revealing a maximum expression in the post-meiotic stage. Data have been obtained from Ref. 
[83]. Lepto leptotene, Zygo zygotene. c Coomassie-stained SDS-PAGE gel loaded with histones extracted from whole testis and elongating sperma-
tids. d Peptides of the mouse H2A.L histone variants identified by mass spectrometry analysis (identified peptides are highlighted in red boxes)
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[90], or only submitted to trypsin digestion [89]. The 
dried extracted peptides were resuspended in 2.5% ace-
tonitrile and 0.05% trifluoroacetic acid and analysed via 
online nano-LC–MS/MS using an Ultimate 3000 LC sys-
tem coupled to an LTQ-Orbitrap instrument (CID frag-
mentation mode) or a Q Exactive Plus instrument (HCD 
fragmentation mode) (Thermo Fisher Scientific).

Protein sequence database search and manual verification
MS RAW files produced by LC–MS/MS analysis of pro-
teolyzed histones were processed as follows. All MS/MS 
spectra were submitted to the Mascot program (version 
2.5.1) for searching against the MS_HistoneDB protein 
sequence database. The parse rules for MS_HistoneDB 
Fasta files in Mascot are using the accession rule >\([^]*\) 
and the description rule \(.*\). In addition, the taxonomy 
and sequence report sources are indicated as “Swiss-Prot 
FASTA” and “FASTA file”, respectively. No taxonomy 
was specified when using MS_HistoneDB with Mascot 
Daemon.

Classical histone modifications were included in the 
variable modifications: N-terminal protein acetylation; 
Lys acetylation; and Lys and Arg mono- or di-methyl-
ation. For all Mascot searches, the tolerance on mass 
measurement was set to 5  ppm for peptides and to 0.6 
or 0.025  Da for fragment ions when considering LTQ-
Orbitrap or Q Exactive acquisitions, respectively. Up to 
four tryptic missed cleavages were allowed for samples 
that were not propionylated in  vitro, as trypsin does 
not cleave acetylated lysine, a frequent modification. 
The enzyme ArgC and up to two missed cleavages were 
specified for the interpretation of data acquired on propi-
onylated samples. All MS/MS spectra leading to the iden-
tification of tryptic peptides specific to newly described 
variants were carefully manually examined: all major 
intensity fragment peaks had to be interpreted in terms 
of y/b ions; a continuous sequence of at least five amino 
acids had to be read in all cases for validation. Proteomics 
data are available from ProteomeXchange (PXD005489).

Additional files

Additional file 1. FASTA file containing MS_HistoneDB mouse entries in 
a   mouse Swiss-Prot FASTA file.

Additional file 2. FASTA file containing MS_HistoneDB human entries in 
a human Swiss-Prot FASTA file.

Additional file 3. MS/MS spectra assigned to peptides of H2A and H2B 
variants with an uncertain protein annotation state in UniProtKB or NCBI.

Additional file 4. MS_HistoneDB mouse entries with links to gene, 
transcript and protein identifiers.

Additional file 5. MS_HistoneDB human entries with links to gene, 
transcript and protein identifiers.
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