POSTER PRESENTATION

Open Access

Oligopaints: highly efficient, bioinformatically designed probes for fluorescence *in situ* hybridization

Brian J Beliveau^{1*}, Eric F Joyce¹, Nicholas Apostolopoulosa¹, Feyza Yilmaza^{1,2}, Chamith Y Fonseka¹, Ruth B McCole¹, Yiming Chang^{1,3}, Jin Billy Li^{1,4}, Tharanga Niroshini Senaratne¹, Benjamin R Williams^{1,5}, Jean-Marie Rouillard^{6,7}, Chao-ting Wu¹

From Epigenetics and Chromatin: Interactions and processes Boston, MA, USA. 11-13 March 2013

Fluorescence *in situ* hybridization (FISH) is a powerful tool to study chromosome structure, positioning, and gene expression on a cell-by-cell basis. We have developed Oligopaints [1], a PCR-based method for generating highly efficient FISH probes from complex DNA libraries. Our method can visualize genomic regions ranging in size from tens of kilobases to megabases with the same basic protocol and gives researchers precise control over the location and patterning of each probe set. We have mined the reference genomes of C. elegans, D. melanogaster, A. thaliana, M. musculus, and humans for genomically unique 32-base sequences with thermodynamically desirable hybridization properties, and have made these sequences available on the Oligopaints website [http:// genetics.med.harvard.edu] along with a suite of scripts and documentation that will assist researchers with probe set design and allow our technology to be extended to any organism whose genome has been sequenced. Oligopaints robustly label chromosomes both in tissue culture cells and whole-mount tissue preparations and can be generated using standard molecular biology techniques and equipment at a price well below the cost of commercial FISH probes. The flexibility offered by our bioinformatic design platform has allowed us to perform complicated hybridizations, such as the simultaneous targeting of RNA and the genomic DNA flanking its site of transcription. Thus, we anticipate that Oligopaints will be a valuable tool for the study of nuclear architecture and the relationship between chromosome positioning and gene expression.

¹Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA Full list of author information is available at the end of the article

Author details

 ¹Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
²Department of Biology, Boston University, Boston, MA, 02215, USA.
³Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
⁴Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
⁵Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
⁶MYcroarray Ann Arbor, MI, 41805, USA.
⁷Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

Published: 18 March 2013

Reference

. Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard JM, Wu CT: Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. *Proc Nat Acad Sci* 2012, Epub 2012 Dec 11.

doi:10.1186/1756-8935-6-S1-P5

Cite this article as: Beliveau *et al.*: **Oligopaints:** highly efficient, bioinformatically designed probes for fluorescence *in situ* hybridization. *Epigenetics & Chromatin* 2013 **6**(Suppl 1):P5.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Beliveau et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.