ORAL PRESENTATION

Open Access

Polycomb-independent activity of EZH2 in castration resistant prostate cancer

Kexin Xu^{1,2*†}, Zhenhua Jeremy Wu^{1,3†}, Anna C Groner^{1,2}, Housheng Hansen He^{1,2,3}, Changmeng Cai⁴, Edward C Stack^{2,5,6}, Massimo Loda^{2,5,6,7}, Tao Liu^{1,3}, Colm Morrissey⁸, Robert L Vessella^{8,9}, Philip W Kantoff², Steven P Balk⁴, X Shirley Liu^{1,3}, Myles Brown^{1,2}

From Epigenetics and Chromatin: Interactions and processes Boston, MA, USA. 11-13 March 2013

Epigenetic regulators represent a new class of therapeutic targets for cancer [1]. Substantial studies suggest that the enhancer of zeste homolog 2 (EZH2) is one of such promising targets [2-4]. The current model of EZH2 oncogenic activity primarily focuses on its function as a subunit of Polycomb repressive complex 2 (PRC2), which silences gene expression via EZH2 histone methyltransferase activity [5,6].

Using a genome-wide approach we found that the oncogenic function of EZH2 in castration resistant prostate cancer (CRPC) is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a co-activator for critical transcription factors including the androgen receptor (AR). This functional switch is dependent on phosphorylation of EZH2, and requires an intact methyltransferase domain. Given that the loss-of-function mutations of EZH2 were observed in myelodysplastic syndrome and acute leukemia [7,8], our discovery of the non-PRC2 function of EZH2 in CRPC raises the potential to develop inhibitors that specifically target the EZH2 activation function while sparing its PRC2 repressive function to avoid the potential hematologic side effects. In addition, our finding that EZH2 cooperates with AR-associated complexes and requires phosphorylation to support CRPC growth suggests novel combination therapies for the treatment of metastatic, hormone-refractory prostate cancer.

Author details

¹Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ²Department of Medical Oncology, Dana-Farber

+ Contributed equally

¹Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA

Full list of author information is available at the end of the article

Cancer Institute and Harvard Medical School, Boston, MA 02115, USA. ³Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02115, USA. ⁴Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA. ⁵Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ⁶Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ⁷Division of Cancer Studies, King's College London, London SE18UB, UK. ⁸Department of Urology, University of Washington Medical Center, Seattle, WA 98195, USA. ⁹Puqet Sound VA Health Care System, Seattle, WA 98108, USA.

Published: 18 March 2013

References

- 1. Yoo CB, Jones PA:. Nat Rev Drug Discov 2006, 5:37.
- 2. Varambally S, et al:. Nature 2002, 419:624.
- 3. Simon JA, Lange CA:. Mutat Res 2008, 647:21.
- 4. Chase A, Cross NC:. *Clin Cancer Res* 2011, **17**:2613.
- 5. Cao R, Zhang Y:. Curr Opin Genet Dev 2004, 14:155.
- 6. Kirmizis A, et al:. Genes Dev 2004, 18:1592.
- 7. Ernst T, et al:. Nat Genet 2010, 42:722.
- 8. Ntziachristos P, et al:. Nat Med 2012, 18:298.

doi:10.1186/1756-8935-6-S1-O14

Cite this article as: Xu *et al*: **Polycomb-independent activity of EZH2 in castration resistant prostate cancer.** *Epigenetics & Chromatin* 2013 **6**(Suppl 1):O14.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Xu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.