Skip to main content
Fig. 1 | Epigenetics & Chromatin

Fig. 1

From: Sensitivity of cohesin–chromatin association to high-salt treatment corroborates non-topological mode of loop extrusion

Fig. 1

High-salt treatment causes cohesin immediate detachment from CTCF-defined binding sites and dissociation of chromatin loops. a Schematic of cohesin complex with stable tetrameric ring and dynamically associating HEAT-repeat regulatory subunits Scc2 and Pds5. b Western blots reflecting redistribution of CTCF and cohesin subunits (Smc3 and Rad21) between chromatin pellets (P) and soluble fraction (S) after treatment of permeabilized cells with either isotonic buffer or high-salt buffer. Salt-resistant histone protein H2B was used as loading control. c Heatmap representing chromatin contact frequencies inside the studied genomic region (hg19, chr21:28,981,189–30,260,402) in control (lower-left corner) and salt-treated (upper-right corner) nuclei. d Possible configurations of salt-sensitive CTCF-defined chromatin loops in terms of cohesin–DNA interaction mode. Note that only structures (i) and (iv) can be reconciled with our ChIP-seq data. e ChIP-seq profiles representing association of CTCF and cohesin subunits (Smc3 and Rad21) with DNA within the studied region after 30-min chromatin incubation in either control buffer or high-ionic-strength buffer. f ChIP-seq profiles representing association of CTCF and cohesin subunit Smc3 with DNA within the studied region after 1-min chromatin incubation in either control buffer or high-ionic-strength buffer

Back to article page