Skip to main content
Fig. 6 | Epigenetics & Chromatin

Fig. 6

From: Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state

Fig. 6

Association of the H3K9me3–H3K36me2/3 bivalent state with genomic states. a Overlap of the H3K9me3–H3K36me2/3 bivalent chromatin state with chromatin states defined by Ernst et al. [15]. b Metagene analyses of H3K9me3–H3K36me2/3, H3K9me3 and H3K36me2/3 distributions over gene bodies in relation to gene expression. c Clustering analysis of tag densities of H3K9me3–H3K36me2/3, H3K9me3, H3K36me2/3 and RNA pol II. Tags were collected in a 10-kb window (− 5 to + 5 kb) centered on the midpoints of TSS from genes with low expression 2 and sorted by k-means clustering (ten clusters). Five clusters with clear H3K9me3–H3K36me2/3 signal are annotated with red numbers. Other clusters not showing strong H3K9me3–H3K36me2/3 signal are annotated with black numbers. The image also shows that the H3K9me3–H3K36me2/3 signal is only observed at regions with H3K9me3 and H3K36me2/3 signals confirming the double specificity of the pull-down. d Representative gene ontology (GO) analysis of biological processes linked with cluster 6. For more information about all the other clusters, refer to Additional file 1: Table S1

Back to article page