Skip to main content
Fig. 5 | Epigenetics & Chromatin

Fig. 5

From: Dynamic properties of independent chromatin domains measured by correlation spectroscopy in living cells

Fig. 5

Physical properties and dynamics of domain structure. a Radii of gyration for the three different localization classes as extracted from the FCS data in Fig. 4 for untreated cells. The given range covers the results from the blob and the loop-cluster conformation under theta-solvent conditions and from the globular conformation and reveals differences in local domain size between euchromatin and heterochromatin. b MSD plots for typical chromatin segments in hetero- (het) and euchromatin (eu) calculated (straight lines) using the loop-rosette model under theta-solvent conditions and the radii of gyration from a and extracted from typical FCS measurements (symbols), showing confined diffusion on the 100 ms and 100 nm time and length scale. c Same as a for TSA-treated and ATP-depleted cells, respectively, showing that the domain size increased to similar values upon perturbation of chromatin structure. d Chromatin mass density versus the number of loops per domain and the fiber persistence length calculated for the loop-cluster conformation under theta-solvent conditions. Highlighted areas represent the parameter subspace in agreement with previous studies. e Same as d, but for the globular and the blob conformation and thus without dependence on loop number

Back to article page