Skip to main content
Figure 4 | Epigenetics & Chromatin

Figure 4

From: Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy

Figure 4

Telomere movement can be altered experimentally. (A) Azide treatment of UMUC3 cells shows that jittering telomere movements require energy. Washing away azide partially restores the movement of jittering telomeres. (B) Southern blotting (insert in right panel) shows that UMUC3 telomeres were extended by expressing an extra telomerase RNA (WT-hTER) in cells, which dampens the telomere movement (right panel). The empty vector does not change the telomere motion (middle panel). (C) 47A MT-hTer, which induces DNA damage foci colocalizing with telomeres (see E in Additional file 14), increases telomere motility in UMUC3 cells (middle panel), whereas the general DNA damaging drug methyl methanesulfonate does not (right panel). (D) A summary of histogram analysis of parental telomeres, longer telomeres under WT-hTER treatment, uncapped telomeres under 47A MT-hTer treatment, or heterochromatin (N = around 400 telomeres or heterochromatin spots). The Additional file 18 insert shows that the Komolgorov-Smirnov non-parametric comparison between histograms is statistically significant. (E) A model for the novel form of the dynamic telomere behavior reported here: short telomeres and uncapped telomeres have higher motility than longer, functionally capped telomeres or other internal regions of chromosome arms. The motility of each mobile chromosomal entity is indicated by the length/strength of the arrow.

Back to article page