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Abstract

Background: Targeted gene silencing is an important approach in both drug development and basic research.
However, the selection of a potent suppressor has become a significant hurdle to implementing maximal gene
inhibition for this approach. We attempted to construct a ‘super suppressor’ by combining the activities of two
suppressors that function through distinct epigenetic mechanisms.

Results: Gene targeting vectors were constructed by fusing a GAL4 DNA-binding domain with a epigenetic
suppressor, including CpG DNA methylase Sss1, histone H3 lysine 27 methylase vSET domain, and Kruppel-associated
suppression box (KRAB). We found that both Sss1 and KRAB suppressors significantly inhibited the expression of
luciferase and copGFP reporter genes. However, the histone H3 lysine 27 methylase vSET did not show significant
suppression in this system. Constructs containing both Sss1 and KRAB showed better inhibition than either one

therapeutic vectors for targeted gene silencing.

alone. In addition, we show that KRAB suppressed gene expression by altering the histone code, but not DNA
methylation in the gene promoter. Sss1, on the other hand, not only induced de novo DNA methylation and
recruited Heterochromatin Protein 1 (HP1a), but also increased H3K27 and H3K9 methylation in the promoter.

Conclusions: Epigenetic studies can provide useful data for the selection of suppressors in constructing
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Background

Both basic research and clinical drug development often
require the inhibition of the activity of a target gene.
Therapeutic antibodies work by blocking the function of
proteins, the end products of the gene-mRNA-protein
cascade. A variety of antibody drugs have been commer-
cially marketed for the treatment of human diseases [1-3],
including anticancer therapy against CD20 (Rituximab,
Ofatumubab), CD52 (Alemtuzumab), CD30 (Brentuximab
vedotin), CD33 (Gemtuzumab ozogamicin), HER2 (Tras-
tuzumab, Pertuzumab), and EGFR (Cetuximab, Panitumu-
mab, Bevacizumab). RNA interference has been used
to inhibit gene function at the RNA level through the
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dicer-argonaute pathway [4,5]. A major problem with
both of these approaches is that neither alters the epi-
genotype in the promoter, leaving a functioning gene
that continues to produce mRNA transcripts. Once
antibody or shRNA exposure is terminated, gene expres-
sion resumes. Thus, constant exposure to the antibody or
shRNA is required for the treatment of disease. Therefore,
it would be desirable to design therapeutic drugs that
function by permanently blocking the function of the
target gene at the DNA level.

It is now possible to target genes by using engineered
DNA-binding proteins, such as zinc fingers [6-8], the
TALEN (transcription activator-like effector nuclease)
proteins [9-12], and the recently-identified CRISPR
(clustered regularly interspaced short palindromic re-
peats) proteins [13,14]. When fused to transcriptional
repressors, these DNA-binding proteins can attach to
the target gene promoter in order to modulate gene
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expression. However, transcriptional regulation in eukary-
otes is a complex process. Most genes are controlled by
the interplay of activating and repressive transcription
factors acting at DNA regulatory elements. Thus, in de-
signing targeted transcriptional inhibitors, it is critical
to select a potent suppressor domain to coordinate with
the guiding protein.

The suppressor domain of the synthetic transcription
factor can inhibit the target gene through several distinct
epigenetic pathways, including histone modifications (for
example lysine residue acetylation and methylation), DNA
methylation, and alteration of local chromatin structure.
DNA methylation-dependent repression is well estab-
lished, especially for hypermethylated CpG island pro-
moters that are characterized by a high density of CpG
residues [15-18]. However, it is still not known which
suppressor will function best for the targeted gene ma-
nipulation. To maximize gene suppression, we com-
pared the efficacy of several suppressors for their
ability to inhibit the activity of a gene promoter. We
were particularly interested in constructing a fusion
suppressor that inhibits the gene promoter by harnes-
sing two distinct epigenetic mechanisms.

Results

Inhibition of the CMV promoter-luciferase cassette by
targeted epigenetic suppressors

To optimize the potency of different epigenetic suppres-
sors, we constructed a target vector by inserting a GAL4-
binding site cluster sequence (GBS) [19] upstream of a
cytomegalovirus (CMV) promoter that drives the expres-
sion of the reporter luciferase gene (Figure 1A). By meas-
uring luciferase activity, we attempted to determine the
best epigenetic suppressor for use in targeted gene
silencing.

We constructed a series of suppressor vectors by
linking a GAL4-binding domain (GBD) with different
epigenetic suppressors, including the CpG DNA meth-
yltransferase Sss1 [20,21], the histone H3 lysine 27
methylase vSET [22,23], and the suppressor domain
KRAB [24-26] (Figure 1A). After binding to the
GAL4-binding site upstream of the CMV promoter,
the epigenetic suppressor domains should inhibit the
expression of luciferase through different epigenetic
mechanisms.

We transiently co-transfected the GBS-pCMV-luciferase
vector and suppressor vectors into 293 T cells. Two
days after transfection, CMV promoter expression was
determined by measuring luciferase activity. We found
that Sss1, a CpG DNA methylase, significantly inhibited
the activity of the CMV promoter (Figure 1B). Similarly,
KRAB, a Kruppel-associated box (KRAB) domain respon-
sible for the DNA binding-dependent gene silencing activ-
ity of hundreds of vertebrate zinc finger proteins, was also
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very effective in suppressing the expression of the CMV
promoter. Interestingly, a three KRAB unit module did
not decrease gene expression more than the single KRAB
unit construct. However, we did not observe a significant
inhibition of the CMV promoter by vSET, a known his-
tone H3K27 methyltransferase domain [22,23], in our
reporter system.

Suppression of the reporter gene promoter by a ‘two-hit’
epigenetic approach

Gene suppressors tested in our system inhibit their target
genes using distinct epigenetic mechanisms. We were
curious if these epigenetic suppressors can be engineered
as a super suppressor that would inhibit target genes at
the maximum activity. We then tested the suppressive
activity of a vector containing both DNA methylation
and H3K27 methylation activities. We constructed three
fusion suppressors and tested their potency in 293 T cells
(Figure 2A).

We first fused CpG methylase Sss1 with H3K27 meth-
yltransferase domain vSET. After co-transfection with
the reporter vector, we did not observe an additive or
synergistic effect of these two epigenetic suppressor do-
mains (Figure 2B), probably because of the weak activity
of VSET in our system (Figure 1B).

We also examined the suppressive effect of combining
the DNA methylase Sss1 with KRAB. We constructed
two fused targeting vectors as Sss1-KRAB and KRAB-
Sss1 expression cassettes. Both fusion cassettes showed a
significantly higher inhibition rate of target gene expres-
sion than did the Sssl cassette alone (Figure 2B). There
were no significant differences in gene silencing when
the Sss1 enzyme was inserted in front of KRAB or at the
C-terminus of KRAB. We did not observe enhanced in-
hibition when the vSET suppression domain was linked
to CpG methylase Sss1.

Inhibition of the copGFP reporter by epigenetic
suppressors

In addition to the luciferase reporter, we also examined
the inhibition of a second reporter protein copGFP that
has a relatively long half-life in host cells (Figure 3A).
Using fluorescence microscopy, the suppressors tested
showed varying inhibition of the expression of the pCMV-
copGFP cassette. Quantitation of copGFP fluorescence
revealed an inhibition pattern similar to that seen in the
luciferase reporter system (Figure 3B). In general, the
KRAB suppressor, whether constructed as a single unit
or as three unit modules, showed the best inhibition
among the tested domains. The combination Sss1 and
KRAB suppressor constructs showed immediate inhib-
ition of the copGFP reporter expression, but the vSET
domain cassette did not show significant inhibition in
this reporter system.
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Figure 1 Targeted suppression of the reporter gene by epigenetic suppressors. a. Schematic diagram of suppressor and reporter gene
vectors. GAL4: the GAL4 DNA binding domain; GBS: GAL4-binding site; KRAB: kruppel-associated box domain; NSL: nuclear localization signal;
pCMV: cytomegalovirus (CMV) promoter; PA: SV40 polyadenylation signal; Sss1: methyltransferase gene from Spiroplasma sp. strain MQ1; VSET: the
histone H3 lysine 27 methyltransferase SET domain. Synthetic factors use the GAL4 domain to bind to the GBS site in the target gene vector,
where the suppressor domain suppresses the activity of the downstream CMV promoter through epigenetic mechanisms. b. Relative expression
of the reporter gene. 293 T cells were transiently co-transfected with 250 ng suppressor vectors, 250 ng luciferase target vector, and 25 ng
thymidine kinase promoter-Renilla luciferase reporter (pRL-TK) control vector. The empty pcDNA3.1 vector was used as the study control.
Forty-eight hours post-transfection, cells were harvested for luciferase assay. For comparison, the pcDNA3.1 control vector was adjusted to 100%.
Each error bar represents the SEM of three independent experiments. a: P <0.05 as compared with the pcDNA3.1 control vector; b: P <0.05 as

We then used a lentiviral delivery system to insert the
pCMV-copGFP cassette into the genome of 293 T cells.
The suppressors were transiently transfected into cell
clones that stably expressed the copGFP gene. Using
this system, we found that the KRAB construct in-
duced the greatest inhibition among the suppressors
tested (Figure 3C). The Sssl insert modestly inhibited
the expression of the copGFP inserted genes, while the
H3K27 methyltransferase vSET domain did not inhibit
the stably-expressed copGFP.

Epigenetic mechanisms underlying the target gene
suppression
We used several epigenetic approaches to examine how
these suppressors inhibit expression of pCMV re-
porters. We first compared the status of DNA methyla-
tion in treated cells using sodium bisulfite sequencing
(Figure 4A).

In the control cells that received only the reporter vec-
tor, there was minimal DNA methylation of CpG dinucle-
otides near the transcription initiation site (17.6 to 27.5%).
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Figure 2 Suppression of the reporter gene by epigenetic ‘two-hit’ suppressors. a. Schematic diagram of the two-hit suppressor vectors.
Two epigenetic suppressor domains are fused with the GAL4 domain. After binding to the target vector, the synthetic factors suppress the target
gene using two distinct epigenetic pathways. b. Relative expression of the reporter gene. Forty-eight hours post-transfection, cells were harvested
for luciferase assay as described in the Figure 1 legend. Each error bar represents the standard error of mean (SEM) of three independent
experiments. a: P <0.05 as compared with the pcDNA3.1 control vector; b: P <0.05 as compared with the Sss1 group.
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In three groups of cells that contain the CpG methylase
domain Sssl insert, there was an increase in CpG methy-
lation of 40 to 60% (Figure 4B, C).

The 3xKRAB suppressing domain, which uses a differ-
ent mechanism to inhibit gene activity, also slightly in-
creased CpG DNA methylation as compared with the
reporter vector group. When fused with Sss1, CpG DNA
methylation significantly increased, presumably reflect-
ing the role of the DNA methylase activity. The induced
de novo DNA methylation was also confirmed by bisul-
fite sequencing of a proximal CMV promoter fragment
(Additional file 1: Figure S1).

We then used a chromatin immunoprecipitation (ChIP)
assay to examine promoter histone modifications in the
three treatment groups (Sssl, KRAB, and Sss1/KRAB).
We focused on histone H3 methylation at lysines 4, 9, and

27 (H3K4, H3K9, and H3K27). H3K4 is associated with an
active promoter. We found that treatment with KRAB or
Sss1/KRAB significantly reduced H3K4 methylation. Sssl
alone also decreased the level of H3K4 methylation
(Figure 5A).

Both H3K9 methylation and H3K27 methylation are
suppressive markers on gene promoters. Transfection
of the KRAB construct enhanced these two suppres-
sion signals in the CMV promoter (Figure 5B, C). Sur-
prisingly, Sss1 was the strongest inducer of H3K27
methylation (Figure 5C), in addition to its DNA meth-
ylase activity. The vSET domain (2xvSET) increased
H3K9 and H3K27 methylation marks in the gene pro-
moter (Figure 5B, C).

Heterochromatin Protein la (HPla) functions as an
epigenetic ‘gatekeeper’ to inhibit gene activity by binding
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Figure 3 Epigenetic suppression of the copGFP reporter gene.
a. Schematic diagram of the copGFP reporter gene system.
b. Inhibition of the transiently-transfected copGFP gene. 293 T cells
were transiently co-transfected with copGFP reporter and suppressor
vectors. Forty-eight hours post-transfection, copGFP expression was
analyzed by luminometer. Each error bar represents the standard
error of mean (SEM) of three independent experiments. *Indicates
P <0.05 versus pcDNA3.1 control vector. c. Inhibition of the copGFP
gene that has been stably integrated in the genome of the target
cell. Expression of the copGFP reporter gene was quantitated by
real-time quantitative PCR. Each sample was analyzed in quadruplicate.
a: P <0.05 as compared with 293 T cells transiently transfected with
pcDNA3.T empty vector; b: P <0.05 as compared with the Sss1 group.

to H3K9me marks. Using ChIP we found that Sss1, but
not KRAB, induced the binding of HP1a to the gene pro-
moter. The KRAB-Sss1 fusion protein recruited HP1a to
the promoter at an intermediate level (Figure 5D).

Discussion

The regulation of gene activity by transcription factors is
crucial to the function of all cells. Transcription factors
contain a DNA-binding domain that specifically binds to
its gene target, and a gene regulatory domain (effector)
that either activates or suppresses the promoter activity
of the target gene. Accordingly, synthetic transcription
factors can be engineered as a powerful tool to regulate

Page 5 of 11

the activity of a target gene promoter in mammalian
systems, making it a useful approach for either basic re-
search or therapeutic design. This approach could be
useful for activating silenced tumor suppressors in anti-
neoplastic therapy, controlling stem-cell differentiation
and stimulating tissue regeneration. These synthetic fac-
tors can target the promoter of an endogenous gene or
be purposefully designed to regulate transgenes. The
most common strategies for engineering transcription
factors targeted to user-defined sequences have been
based on the programmable DNA-binding domains of
zinc finger proteins, TELENs, and recently, CRISPR
Cas9 system.

We compared the action of several synthetic suppres-
sor domains using luciferase and copGFP reporter sys-
tems. Through the GAL4 DNA-binding domain, the
suppressor domain was tethered to the upstream GBS
site of the CMV promoter (Figure 1A). We demonstrate
that tethering a KRAB-containing protein and CpG
methyltransferase Sssl triggers epigenetic modifications
in the gene promoter and induces suppression of both
transiently transfected and stably integrated genes.

Sss1 is a DNA methyltransferase that methylates the C5
position on the base moiety of all cytosine nucleotides con-
tained in unmethylated or hemimethylated double-stranded
DNA having the dinucleotide sequence 5-CpG-3’. Sssl
methylates CpG dinucleotides in a non-specific manner.
Once tethered to a target site, it methylates CpG islands in
DNA sequences near the region where it binds. Previously,
we fused Sss1 to the DNA-binding zinc finger (ZF) domain
of chromatin factor CTCF and examined its potential to
suppress the promoter of a long noncoding RNA Kcnglotl.
The mouse Kcngl imprinting control region (ICR, or
KvDMR;) contains two CpG islands: CpG 1 and CpG 2
[27]. The CpG 1 island, located approximately 200 kb
downstream of the Kcngl promoter, overlaps with the
Kcenglotl promoter, and contains two critical CTCF bind-
ing sites (CTS1 and CTS2). The CpG1 DNA is paternally
unmethylated and maternally methylated, thereby allowing
the exclusive expression of Kcnglotl from the paternal
chromosome. CTCF binds to the unmethylated paternal al-
lele and may participate in the regulation of the expression
of Kcenglotl [28]. By transfecting the ZF-Sss1 vector into
the target cells, we found that the ZF domain guides meth-
ylase Sss1 to CTCEF sites in the CpG1 island of the paternal
allele, and induces de novo DNA methylation in the pa-
ternal Kcnglotl promoter. This de novo DNA methyla-
tion silenced Kcnglotl and caused the loss of imprinting of
its target gene Kcngl [21]. Similarly, in this study we also
show that the Sss1 fusion protein can induce de novo DNA
methylation at the target site (Figure 4), leading to sup-
pression of the reporter gene, whether it is transi-
ently transfected or stably integrated in the host
genome (Figure 3).
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Figure 4 DNA methylation of the CMV promoter. a. The schematic diagram of the CMV promoter and the location of cytosine-phosphate-guanine
dinucleotide (CpG) islands. After treatment with sodium bisulfite, genomic DNA was amplified with PCR primer JH1351 and JH1370. Red bar: CpG
islands that were sequenced. b. DNA methylation of the CMV promoter using methylation-specific PCR (MSP). Stable clone cells that have the
genomically integrated GBS-pCMV-copGFP were transiently transfected with synthetic suppressor vectors. Genomic DNA was extracted and
amplified with primers that specifically recognize the methylated CpGs (top panel). Total genomic DNAs were amplified with primers that
recognize both unmethylated and methylated CpGs. c. Efficiency of de novo DNA methylation by synthetic suppressors. Stable GBS-pCMV-copGFP
clone cells were transiently transfected with 1 ug suppressor vectors. Forty-eight hours post-transfection, cells were harvested for bisulfate sequencing.
DNA methylation was calculated as the average percentage of methylated CpGs/(methylated CpGs + unmethylated CpGs) from five CpG islands (110,
122, 141,165, and 174). *P <0.05 as compared with cells transiently transfected with pcDNA3.1 empty vector.

The Kriippel-associated box (KRAB) constitutes tran-
scriptional repression domains in approximately 400 hu-
man zinc finger protein-based transcription factors [29].
The KRAB domain presents one of the strongest repres-
sors in the human genome. KRAB functions through
protein-protein interactions via its two amphipathic heli-
ces (A box and B box) [26,30-32] and directs the assem-
bly on templates of multiprotein repression complexes
containing the primary co-repressor KAP1/KRIP-1/TTF1-
beta [33]. Upon tethering to specific genomic loci,
KKAP1 acts as a scaffold for the recruitment of different

heterochromatin-inducing factors and complexes, such
as Heterochromatin Protein 1 (HP1la), the H3K9me3-
histone methyltransferase SETDB1 and the nucleosome
remodeling and deacetylase complex NuRD [34,35], ac-
companied by loss of histone acetylation and an increase
of histone 3 lysine 9 trimethylation (H3K9me3) [36]. After
tethering to the target promoter, synthetic factors contain-
ing KRAB were the most potent inhibitors of the reporter
gene in our system (Figures 1, 2 and 3).

Histone H3K9 or H3K27 methylation is normally associ-
ated with chromatin compaction [37] and transcriptional
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silencing [38-40]. The core catalytic domain of these lysine
methyltransferases shares a conserved structural fold
called the SET domain [41-43]. A conserved SET do-
main methyltransferase from Paramecium bursaria
chlorella viruses, termed vSET, uses a ‘walking’ mech-
anism to suppress host transcription by methylating
histone H3 at lysine 27 (H3K27), a mark for eukaryotic
gene silencing induction [22]. VSET is the smallest
methyltransferase and functions as a dimer [22], in a
sharp contrast to the H3K27 methyltransferase EZH2,
which is monomeric and relies on polycomb repressive
complex 2 (PRC2) partners to achieve optimal activity
[44]. When fused to the GAL4 DNA-binding domain, it
effectively inhibits the target promoter in 293 T cells
[23]. To our surprise, when this vSET domain was in-
troduced into our system, we did not detect any inhib-
ition of the reporter gene promoter. The lack of
suppression could be related to differences in vector

construction or some other factor in the promoter
region.

Each suppressor uses overlapping epigenetic pathways
to suppress its downstream target promoter. KRAB, the
most potent suppressor in our system, does not affect the
status of DNA methylation in the promoter (Figure 4). In
contrast, it reduces the concentration of the active histone
mark H3K4 methylation and increases the suppressive
H3K9 and H3K27 methylation marks (Figure 5). Sss1, al-
though less potent than KRAB, not only significantly in-
duces de novo DNA methylation in the gene promoter,
but also alters histone marks in the promoter, decreasing
H3K4 methylation and enhancing H3K9 and H3K27
methylation. It also simultaneously recruits the hetero-
chromatin protein HPla. HP1a proteins are ‘gatekeepers’
of epigenetic gene silencing mediated by lysine 9 of his-
tone H3 methylation (H3K9me). Intriguingly, vSET also
induces DNA methylation in the promoter (Figure 4),
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but this does not completely translate into the gene sup-
pression. Based on bisulfite sequencing data (Additional
file 1: Figure S1), it appears that the vSET domain in-
duces DNA methylation in a random manner, and it is
possible that this random DNA methylation may not be
sufficient to block promoter activity. Further studies are
needed to address this issue.

Theoretically, the two-hit approach using the Sssl-
KRAB fusion construct should yield more compete sup-
pression than the single KRAB construct. However, our
data did not demonstrate a significant synergy using the
fusion construct. Moreover, it is noteworthy that KRAB
alone results in significant amounts of DNA methylation
of the gene promoter, which compares well with the
levels that are achieved simply by tethering Sssl itself
(Figure 4, Additional file 1: Figure S1). This observation
could explain why creating a fusion with SssI does not
increase the suppressive effect.

It should also be emphasized that our reporter gene
cassette contains the most potent CMV promoter. Differ-
ent promoters vary in their content of the CpG islands,
particularly those CpGs located in the critical consensus
regulatory sequences of the promoter. In addition, the
GAL4 DNA-binding site (GBS) is located far upstream of
the promoter. All these variables may significantly affect
the degree of promoter suppression by the introduced
synthetic factors.

Conclusions

In summary, our data demonstrate that KRAB and Sss1,
when tethered to the gene promoter, significantly inhibit
the expression of target genes using distinct epigenetic
mechanisms. KRAB suppresses gene expression by al-
tering the histone marks in the gene promoter. Sssi,
however, inhibits the target gene by multiple pathways,
including de novo DNA methylation, H3K27 and H3K9
hypermethylation, and the recruitment of Heterochro-
matin Protein 1 (HP1a). The two-hit constructs con-
taining both Sss1 and KRAB showed slightly better
inhibition than either alone. Further studies are needed
to examine if this two-hit approach will be useful in
constructing therapeutic vectors that target a disease-
related gene promoter.

Methods

Construction of reporter and effecter vectors

Suppressor domains, including Sss1 (DNA CpG methyl-
ase), VSET (histone H3K27 methyltransferase), and
KRAB (a Kruppel-associated box domain responsible
for the DNA binding-dependent gene silencing activity
of vertebrate zinc finger proteins), were amplified and
joined with GAL4 DNA-binding domain using PCR
overlapping primers (Additional file 2: Table S1). Sssl
was amplified from our CTCF-Sssl vector [20,21]. The
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KRAB domain of the human kox-1 gene was amplified
from a 293 T cell cDNA sample. The vSET domain was
synthesized by PCR using overlapping oligonucleotides
synthesized at the Stanford University PAN facility. The
GAL4 DNA-binding domain was amplified from pBIND
vector (CheckMate Mammalian Two-Hybrid system,
Promega, Wisconsin, United States) with primers that
carry the linker sequence. The PCR products were gel
purified and ligated using PCR to form full length
GAL4-suppresor inserts. After digestion with restriction
enzymes Xbal and Apal, the inserts were ligated into
pcDNA3.1 vector (Invitrogen, California, United States).

For the two-hit vectors, the suppressor domains (KRAB,
Sss1, and vSET) were ligated with PCR overlapping
primers to construct Sss1-vSET, 3xKRAB, Sss1-KRAB,
and KRAB-Sss1 suppressor domains. The suppressors
were cloned into pcDNA3.1 vector at Xbal/Apal sites.

For target gene vector, the GAL4-binding site (GBS)
and CMV promoter were amplified by PCR from pACT
(Promega, Wisconsin, United States) and pEGFP-N1
(Clontech, California, United States) vectors, respect-
ively, and cloned into a firefly luciferase pGL3 basic
vector (Promega, Wisconsin, United States). All vec-
tors were sequenced to validate the sequences. For the
GBS-pCMV-copGFP vector, the GAL4 binding site
(GBS) was amplified and cloned at the Spel site up-
stream of the CMV promoter in pGreen vector (System
Biosciences, California, United States).

Cell culture and transfection

293 T cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM, Invitrogen, California, United
States) supplemented with 10% (v/v) fetal bovine serum
(EBS), penicillin (100 U/ml), and streptomycin (100 pg/ml)
in a humidified incubator at 37°C and 5% CO,. Tran-
sient and stable transfections were performed using
Lipofectamine™ 2000 (Invitrogen, California, United
States). To obtain stable transfection clones, cells were
transfected with a GBS-pCMV-copGFP vector and were
selected with 5 pg/ml puromycin 48 hours after trans-
fection. Stable clones were selected for examining the
suppression of the endogenous copGFP by the con-
structed suppressor factors.

Gene activity by luciferase assay

Fresh 293 T cells were seeded into 48-well plates at a
density of 1x 10> cells per well. Suppressor vectors,
luciferase reporter vector and pRL-TK control vector
were co-transfected into cells using Lipofectamine™
2000 (Invitrogen, California, United States). Cell ly-
sates were harvested 48 hours after transfection, and
dual-luciferase reporter assays were performed using a
Turner Biosystems Single Tube Luminometer (Promega,
Wisconsin, United States).
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Quantitation of copGFP fluorescence by luminometer

293 T cells were seeded in 12-well plates at a density of
3x10° cells per well. Suppressor vectors and copGFP
reporter vector were co-transfected into 293 T cells.
Forty-eight hours after transfection, lysates were harvested
and copGFP expression assays were performed using a
Turner Biosystems Single Tube Luminometer (Promega,
Wisconsin, United States).

Real-time gPCR quantitation

Monoclonal 293 T cells carrying GBS-pCMV-copGFP
were transiently transfected with suppressor vectors. Cells
were harvested 48 hours post-transfection and lysed by
TRI Reagent® (Sigma, Missouri, United States). Total RNA
was extracted from tissues by TRI-REAGENT (Sigma,
Missouri, United States). After DNasel digestion of
total RNA, first-strand cDNA was synthesized by using
M-MLV Reverse Transcriptase (Invitrogen, California,
United States) as previously described [45,46]. Real-
time qPCR was performed using 2xKapa mixed with
SYBR (Applied Biosystems, California, United States)
on an ABI PRISM 7900 HT Sequence Detection System
(Applied Biosystems, California, United States) with
coGFP primers (forward, 5-CCGCCATGGAGATCG
AGTG-3’; reverse, 5-GCCTTTGGTGCTCTTCATCT
TG-3). B-ACTIN (forward, 5-CAGGTCATCACCATT
GGCAATGAGC-3’; reverse, 5- CGGATGTCCACGT
CACACTTCATGA-3’) was used as an internal control.
The assay was repeated in three independent experi-
ments. Each sample was analyzed in quadruplicate.
PCR data were normalized to the Ct of 5-ACTIN as
previously described [21,47].

Methylation specific PCR (MSP)

Genomic DNA was extracted and treated with sodium
bisulfite (Sigma, Missouri, United States) as previously
described [48-50]. The CMV promoter region was ampli-
fied with three primer sets. Universal primers were used
to amplify the total DNA (both methylated and unmethy-
lated DNA). Unmethylated DNA-specific and methylated
DNA -specific primers (Additional file 2: Table S1) were
used to amplify unmethylated and methylated CMV
promoter sequences, respectively.

Quantitation of promoter DNA methylation by bisulfate
sequencing

Monoclonal 293 T cells with stable expression of the en-
dogenous copGFP were transfected with the suppressor
vectors. After treatments, cells were collected and gen-
omic DNA was extracted. Genomic DNAs were converted
by bisulfite sodium using an EZ DNA MethylationGold™
kit (Zymo Research, California, United States) and were
purified using a DNA purification kit (Qiagen, California,
United States). DNA samples were amplified with
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PCR primers (JH1351F: 5'-ttttaaagattgtgtatttaaagattg-
3’and JH1370R: 5’-aataccaaaacaaactcccattaac-3’) that cover
7 CpG islands. After 2% agarose gel electrophoresis, the
predicted bands (240 bp) of the PCR product were recov-
ered using a gel purification kit (Qiagen, California,
United States), cloned, and sequenced. DNA methylation
was calculated as the average methylation percentage of
all CpG sites.

Promoter histone code by chromatin
immunoprecipitation (ChiIP)

As described previously [21,51], ChIP assays for histone
methylation and HP1a recruitment were performed using
an EZ-Magna ChIP™ G chromatin immunoprecipitation
Kit (Millipore, California, United States). Briefly, monoclo-
nal 293 T cells for stable expression of copGFP in 10 cm
dishes were transiently transfected with 15 pg of various
suppressor vectors. Forty eight hours after transfection,
cells were cross-linked with 1% formaldehyde (Sigma,
Missouri, United States) and harvested for immunopre-
cipitation. Antibodies used in ChIP assays included
anti-H4K4Me3, anti-H3K9Me3, anti-H3K27Me2, and
anti-HP1la (Millipore, California, United States). An ali-
quot of cell lysates was saved to serve as the input DNA
control. After the reversal of crosslinking at 62°C for
2 hours and 95°C for 10 minutes, ChIP samples were
purified and subjected to real-time qPCR. Individual
ChIP assays were repeated three times to confirm the
reproducibility of the qPCR. Real-time qPCR was per-
formed using 2xKapa mixed with SYBR (Applied Bio-
systems, California, United States) on an ABI PRISM
7900 HT Sequence Detection System (Applied Biosys-
tems, California, United States) with pCMV primers
(forward, 5’-gcggttttggcagtacatca-3’; reverse, 5-gggcg
gagttgttacgacat-3’). Each sample was analyzed in
quadruplicate.

Statistical analysis

Results were expressed as mean + SEM. Data were ana-
lyzed using SPSS software (version 16.0; IBM, New
York, United States). Student’s {-test or one-way ana-
lysis of variance (Bonferroni test) was used to compare
statistical differences for variables among treatment
groups. Results were considered statistically significant
at P <0.05.

Additional files

Additional file 1: Figure S1. DNA methylation of the CMV promoter.
Stable clone cells were transiently transfected with synthetic suppressor
vectors. Genomic DNA was extracted and treated by sodium bisulfite.
Total genomic DNAs were amplified with PCR, cloned into plet vector,
and sequenced. Open circles: unmethylated CpGs; solid circles:
methylated CpGs.
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[ Additional file 2: Table S1. PCR primers used in the study.
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