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Abstract

The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The
immune evasion is directly linked to the silencing of the members of extended families of genes that encode for
major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the
gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the
detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the
budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and
have provided significant insights into the molecular basis of these phenomena. This information is becoming
increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics
and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida,
and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by
these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
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Review

Mechanisms of antigenic variation and immune evasion
Many protozoan parasites and pathogenic fungi use anti-
genic variation as the major strategy to evade the host
immune defenses [1-3]. The genomes of these species
harbor extended families of genes that encode closely re-
lated surface proteins (Table 1). In any given cell, all but
one gene of these families are repressed by compact
chromatin structures. These structures are refractory
to transcription and are epigenetically transmitted to
daughter cells. Occasional and reversible switches to a
different active gene confer antigenic variation. These
ever-changing ‘cloaks of invisibility’ enable the pathogens
to persist in the hosts with devastating efficiency [1,4].

Silent ‘donor’ genes in Trypanosoma and Pneumocystis

Trypanosomes are bloodstream parasites with a most
remarkable ability to evade the immune system and
to cause severe diseases such as nagana (Irypanosoma
vivax, T. congolense) and sleeping sickness (7. brucei) [3].
These maladies are characterized by extreme fatigue and
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sleepiness. T. brucei is the prevalent pathogen in humans
and has become a prototype for antigenic variation. It
harbors a massive family of more than 1,000 mostly
subtelomeric variant surface glycoprotein (VSG) genes
and pseudogenes.

The fungi of the Pneumocystis family reside within the
mammalian lungs and normally cause no symptoms, but
can lead to serious infections in immunocompromised
individuals and in HIV-infected patients [5,6]. Antigenic
variation in Pneumocystis is produced by about 160
major surface glycoprotein (MSG) genes. Many of these
are the last protein encoding genes at the telomeres of
the 17 chromosomes [18,19] (Figure 1A). Interestingly,
the interchromosomal MSG genes or pseudogenes are
also surrounded by telomeric repeats [18].

The only active VSG in T. brucei is expressed from
one of 15 dedicated expression sites, while the active
MSG in P. carinii is expressed from one unique expres-
sion site [4,5] (Figure 1A,B). These expression sites are
adjacent to a telomere and contain gene promoters plus
other regulatory elements. The pools of silent intact
VSG and MSG genes plus pseudogenes and other VSG
and MSG homologous sequences serve as a depot of
donor elements that are translocated to the expression
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Table 1 Varying genes and known mechanisms of variation in different pathogens

Species Varying genes (number of genes given in parentheses) Mechanisms involved in gene variation Reference(s)
Trypanosoma brucei VSG (>1,000) Epigenetic switches, DNA recombination [3]
Pneumocystis carinii MSG (160) DNA recombination [5,6]
Plasmodium falciparum VAR (60), rifin (150 to 200), and stevor (30 to 35) Epigenetic switches [7-10]
Candida glabrata EPA (23) Epigenetic switches [2,11]

Giardia lamblia VSP (220) RNA interference [12-14]
Saccharomyces cerevisiae  Various subtelomeric genes Epigenetic switches [15,16]

S. cerevisiae Mating type loci (HMRa and HMLa) DNA recombination [17]

sites via DNA recombination [5,20] (Figure 1A,B). It is
not known how the frequency of these recombination
events is controlled [3]. However, it seems apparent that
the silencing of the VSGs in T. brucei is accomplished by
epigenetic means [21,22]. Strong support for this idea is
offered by the observations that the knockdowns of key
heterochromatin regulators (SIR2, RAP1, DOTIA) leads
to their derepression [21,23,24]. No genetic evidence is
available from Pneumocystis. It is noteworthy that a
similar constitutive repression of ‘donor’ genes and their
translocation to an active site governs the switching of
the mating type in S. cerevisiae [17]. These parallels are
extensively covered [3-5] and will not be reviewed here.

Epigenetic switching of subtelomeric genes in
Trypanosoma, Plasmodium, and Candida

Of the 15 VSG expression sites in 7. brucei, only one is
active at a time. Early during the infection, the VSG
switching is conducted mostly by rapid epigenetic on-off
transitions between these expression sites (Figure 1B).
Later on, the switching involves both epigenetic and
DNA recombination events [3,4]. It is not known how
the expression from a single site is achieved.

Different species of Plasmodium cause malaria by in-
vading red blood cells in a wide variety of organisms.
The pathogens undergo a complex life cycle that in-
volves transmission by mosquitoes and a latency period
in the livers of the hosts [7,8]. P. falciparum, one of the
most extensively studied malaria pathogens, is chosen as
a paradigm for gene variation by epigenetic switches.
During blood-stage infection this pathogen expresses
alternative forms of the immunodominant antigen P.
falciparum erythrocyte membrane protein 1 (PfEMP1).
The expressed PfEMP1 is trafficked by specialized ve-
sicular structures and then displayed on the surface of
the infected erythrocytes [7]. Using PfEMP1 as an ad-
herent, the infected erythrocyte is sequestered to the
vascular walls to contribute to the severe symptoms of
malaria. PfEMP1 is encoded by a limited family of 60
VAR genes, which are positioned in the subtelomeric re-
gions of the chromosomes and in several interchro-
mosomal clusters. An elaborate and poorly understood

mechanism of coordinated silencing of the VAR genes is
combined with rare epigenetic switches to other variants
to confer an ever-shifting antigenic makeup (Figure 1C).
This strategy is sufficient to minimize recognition of
PfEMP1 by the immune response [7] and, at the same
time, prevents the exhaustion of the reservoir of VAR
genes [25-27]. Other families of surface proteins (rifin,
stevor, PfMC-2TM) also contribute to antigenic vari-
ation, but PfEMP1 is believed to be the critical driving
force of the immune evasion [7,9]. Besides epigenetic
switches, there is solid evidence for frequent gene con-
versions between VAR genes [9]. While these contribute
to the diversification of the gene family, such events do
not directly contribute to the switching of the PfEMP1
surface antigens.

The coordinated silencing of all but one VAR gene is
the crux of prolonged malaria infections and the slowly
developing and incomplete immunity to the pathogen.
Consequently, the factors that contribute to antigenic
variation in P. falciparum have been extensively studied
[7,9,25,28]. While a significant body of information has
been acquired, the mechanisms of VAR silencing remain
unknown [9,26,27,29-31]. For example, it is not clear
what kind of cis-elements serve as VAR silencers. The
introns [32] and a conserved region upstream of the
VAR promoters [30,33,34] have been proposed to act as
silencing elements, but later on the significance of the
intron has been debated [7,30]. The pairing of VAR
genes has also been proposed to contribute to repres-
sion, but the mechanistic details are yet to be elucidated
[30,34]. However, it has been conclusively shown that
histone acetylation, histone methylation, and the pro-
pagation of heterochromatin away from the telomeres
control the VAR genes [35-39]. Another line of evidence
suggests that the tethering of VAR genes to poorly
characterized subdomains in the nuclear periphery
could be critical for both their repression and swit-
ching [31,40,41]. In addition, there is widespread ex-
pression of long non-coding RNAs in blood-stage P.
falciparum [42-45], but no conclusive evidence for
the regulation of VAR genes by such RNAs has been
obtained [46-48].
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Figure 1 Schematics of varying genes and major mechanisms of variation in Pneumocystis carinii, Trypanosoma brucei, Plasmodium
falciparum, and Candida glabrata. (A) In P. carinii, one to three MSG gene arrays (frequently flanked by MSR or PRT genes) are positioned next
to a variable number of subtelomeric repeats and the telomeres (depicted by >>>). These genes (black arrows) lack promoters. To be expressed,
a single MSG (red arrow) is transferred by homologous recombination to a unique expression site that contains an upstream conserved sequence
(UCS). (B) In T. brucei, over 1,000 VSG gene donor sequences (black arrows) are exchanged by homologous recombination to one of fifteen
expression sites. The VSG genes at these sites (red arrows) are adjacent to the telomeres and flanked by multiple 70 bp repeats. Several
expression site-associated genes (ESAGs, open arrows) are distal to the telomere. All these and VSG are expressed in the direction of the telomere
by one promoter (angled arrow). Only one of the fifteen expression sites is active at a time. Infrequent epigenetic switches of this site confers
allelic exclusion and antigenic variation. (C) In P. falciparum, 60 VAR genes are positioned in tandem close to the telomeres or at interchromosomal
locations (not shown). VAR, (red arrow) point towards the telomere, while VARg (white arrow) point away. Six telomere-associated repeat elements
(TARE) and several 12-base SPE sites (bind P. falciparum SPE2 interacting protein 2, PfSIP2) are located between VAR genes and the telomere. RIF and
STE genes are frequently found in the vicinity of VAR genes. Only one VAR gene is expressed at a time. Switches between expressed VAR genes confer
allelic exclusion and antigenic variation. (D) In C. glabrata, EPA genes are organized in arrays and are the last protein encoding genes before the
telomere. In the example shown in the figure, EPA3 and EPA2 are mostly silenced, while EPAT is expressed. ESAG, expression site-associated gene; PfSIP2,
P. falciparum SPE2 interacting protein 2.

Candida glabrata is an opportunistic parasite that to host epithelial cells via epithelial adhesin (EPA) genes.
causes prolonged urinal tract infections [6]. The key Antigenic variation in this species is conferred by 23
event in these infections is the adhesion of C. glabrata  EPA genes, which are positioned in the subtelomeric
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regions (Figure 1D) and are repressed by the NADH-
dependent histone deacetylase SIR2 [49,50]. Interestingly,
C. glabrata is a nicotinic acid auxotroph. It is believed that
the repression of EPA genes relies on the NADH provided
by the host. Once the parasite moves to the urinary tract
(there is very little nicotinic acid in the urine) the activity
of Sir2p diminishes and the EPAs, and EPAI in particular,
are expressed [2,11].

RNA interference in Giardia

Giardia lamblia is a human intestinal pathogen that
causes mild to severe diarrhea. Infection is transmitted
by ingestion of cysts followed by the attachment of
Giardia to the intestinal cells via variant-specific surface
protein (VSP) genes. G. lamblia displays distinctive anti-
gen variation through changes in the expression of about
220 VSP genes [51]. However, there are notable distinc-
tions in the control of variation between Giardia and
the previously described species. First, VSP genes are not
clustered in the subtelomeric regions. Second, it has
been suggested that multiple VSP genes are expressed
and then all but one of the VSP mRNAs are repressed
by an elaborate endogenous RNAi system that remains
to be fully characterized [12-14]. No DNA methylation
has been demonstrated in this organism [12].

Telomere position effect (TPE) in S. cerevisiae: similarities

in pathogens

Allelic exclusion and variation is the crux in the infec-
tions by the above pathogens. However, the mechanisms
of gene silencing and switching are not so well under-
stood. On the other hand, a similar (but not identical)
phenomenon (referred to as telomere position effect,
TPE) in the innocent budding yeasts is significantly bet-
ter characterized [15,52]. Briefly, silencing is mediated
by compact heterochromatin, which is re-established
after each cell division. Rare conversions between the
silent and active states confer a quasi-stable pattern of
epigenetically controlled gene expression in the vici-
nity of the telomeres [53]. TPE has been extensively
reviewed [15,53,54] and is schematically presented in
Figure 2A.

Unlike many higher eukaryotes, DNA methylation
plays no role in the repression of subtelomeric genes in
S. cerevisiae. In addition, while long non-coding RNA
(called telomeric repeat-containing RNA, TERRA) is
produced by the yeast subtelomeric DNA, a role of this
RNA in gene silencing and switching has not been estab-
lished [55]. These peculiarities have rendered this model
organism somewhat irrelevant to epigenetics in higher
eukaryotes. However, they make it quite relevant to the
parasites that were discussed earlier. While budding
yeasts cannot represent the whole variety of mechanisms
for antigenic variation, some noteworthy similarities
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do exist. In Plasmodium, Candida, Trypanosoma, and
Pneumocystis, the gene families that contribute to anti-
genic variation are mostly or exclusively located in the
subtelomeric regions of the chromosomes. The repression
of these subtelomeric genes is highly dependent on
histone modifications [23,24,39,49,51,56-58], whereas
in other eukaryotes the formation and maintenance of
heterochromatin is more complex and involves additional
levels of regulation. For example, similarly to S. cerevisiae
and in contrast to higher eukaryotes, DNA methylation
and RNAIi do not seem to contribute to the silencing of
the variance genes [7,15].

In S. cerevisiae and P. falciparum the silenced var-
iation loci cluster in the nuclear periphery [8,15,59]. In
S. cerevisiae, the relocation of these loci leads to dere-
pression [59]. In P. falciparum, relocation to another ‘ac-
tive’ domain, still in the nuclear periphery, is believed to
contribute to the switching and the activation of VAR
genes [7,33].

In S. cerevisiae, P. falciparum, and possibly other pa-
thogens, the epigenetic silencing of genes needs a pas-
sage through the S phase [32,53], but it is not clear if
DNA replication itself is the required process [60].

Shared strategies of antigenic variation and the means to
combat them

In order to implement antigenic variation, the parasites
must execute three distinct tasks. First, they need to se-
lectively and exclusively activate one gene of the family
at a time. Second, they need to effectively repress all
but one of the genes of the family. Third, they need
to switch the active gene at a frequency that runs
ahead of the building immune response but does not
exhaust the repertoire of the gene family.

Selective expression of one gene

The key question, how to selectively express one and
only one gene of the extended family, remains un-
answered. Ostensibly, the means must be coupled to the
repression of all other genes, but how a gene is singled
out is a persisting mystery. A common theme in the
studies in Pneumocystis and Trypanosoma is the exist-
ence of expression sites [3,7]. In Pneumocystis the single
expression site determines the expressed variant. This
situation calls for regulated DNA recombination events
at a frequency that will not jeopardize the pool of MSG
genes. The same applies to the VSG genes in trypano-
somes except that the situation there is complicated by
the multiplicity of expression sites and their exchange
through bona fide epigenetic means. A clue from S. cere-
visiae suggests that the expressed site in trypanosomes
could be related to the position of the active locus in
the nucleus. In S. cerevisiae the telomeres cluster in se-
veral compartments in the nuclear periphery. Upon
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Figure 2 Subtelomeric gene silencing in Saccharomyces cerevisiae. (A) Spreading of histone deacetylation away from the telomere. Rap1
proteins associate with the telomere repeats and recruit Sir2/Sir3/Sir4 proteins. Sir2p is an enzyme that deacetylates the histones in the adjacent
nucleosome. More Sir2/Sir3/Sir4 proteins are recruited by the now deacetylated nucleosome (dark octamer) to eventually spread histone
deacetylation to the next nucleosome (depicted by the curved arrow above the nucleosomes). Histone deacetylation and silent information
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regulator (SIR) proteins can spread several kilobases away from the telomeres. (B) Subtelomeric cis-elements in S. cerevisiae. Repetitive core X and
Y’ elements contain dormant origins of DNA replication (ACS, it binds origin recognition complex, ORC), internal telomeric sequences (ITS, they
bind Rap1 proteins), chromatin boundaries (depicted by B, and subtelomeric anti-silencing regions (STARs). (C) Chromatin boundaries restrict the
spreading of histone deacetylation and prevent the silencing of telomere-distal genes (red arrows). (D) /TS and ACS are protosilencers, which
extend the spreading of SIR proteins or confer telomere-dependent silencing of genes (white arrows) beyond an active subtelomeric gene (red
arrow). A hypothetical STAR and a chromatin boundary contribute to the maintenance of the active gene. ORC, origin recognition complex; SIR,

silent information regulator.

translocation to the nucleoplasm the telomeric genes
lose repression [59]. A few proteins, including the Ku
antigen and the nuclear pore components, contribute to
this peripheral clustering [59,61]. A similar clustering of
the inactive VAR genes in the nuclear periphery is appar-
ent in Plasmodium, but the active VAR gene remains in
the nuclear periphery slightly away from the repressed
cluster [7,8]. These observations are consistent with the
idea that the sub-nuclear localization of the VAR or VSG
loci is linked to the expression of these genes. However,

it is not clear if this differential localization is the
cause or the consequence of the switch from silenced
to active state.

Another clue from budding yeasts points to the fine
architecture of subtelomeric DNA as combined with the
balance of transcriptional activators and repressors. In S.
cerevisiae, subtelomeric DNA consists of conserved core
X and Y elements and harbors degenerate internal telo-
meric repeats (/7S), silent origins of DNA replication
(ACS), and isolated binding sites for Raplp (Figure 2B).
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These act as protosilencers and relay the spreading of SIR
proteins away from the chromosome ends (Figure 2D)
[62]. Additional complexity is provided by subtelo-
meric anti-silencing regions (STARs) and chromatin
boundaries (Figure 2C) [63-65]. Likewise, the folding
of the telomere and the establishment of t-loops and
G-quadruplexes also contributes to complexity [63,66,67].
In this vein, G-quadruplex structures have been recently
characterized in P. falciparum [68], while protosilencers
have been conclusively identified in C. glabrata [69,70].
The SPE sites and the subtelomeric TARE3 in P. falci-
parum (Figure 1C) have also displayed properties con-
sistent with protosilencing or boundary activities [45,71].
It is therefore tempting to speculate that assemblies
of cis-elements similar to these in S. cerevisiae also
exist in parasites.

It has been shown that in S. cerevisiae, the protosi-
lencers, STARs, and chromatin boundaries can confer
isolated expression of a gene imbedded in a hetero-
chromatic region (Figure 2D) [64,66]. At the same time,
studies in S. cerevisiae and D. melanogaster have shown
that the abundance/strength of transcriptional activators
counteract the silencing of target genes [72-74]. In S.
cerevisiae, it has been demonstrated that overexpression
of the trans-activator Pprlp antagonizes the silencing of
a telomeric UURA3 reporter and that progression through
S phase was necessary for the establishment of the active
state [73]. It is conceivable that in parasites a similar
mechanism of silent to active transition could exist. For
example, an increase of variance gene-specific transcrip-
tional activators and/or STAR binding factors accompan-
ied by a passage through S phase could destabilize the
repression of all genes in the family and predispose them
to a conversion (see model in Additional file 1). Al-
though the currently expressed gene has the advantage
to remain active through epigenetic heritance [75],
another gene could compete via the engagement of
the chromatin boundaries and the gradual sequestra-
tion of limiting gene-specific activators. Reversion to
a lower abundance of such activators would reinstate
the robust repression of the other variance genes and
uphold the conversion. Hence, the interplay between
weak cis-elements and subtle changes in the abundance
of transcription factors could significantly contribute
to the elusive mechanism of epigenetic switches. In
support, such temporary destabilization and expres-
sion of multiple VAR genes before a single VAR gene
is selected has already been observed in P. falciparum
[30,31,75]. Interestingly, there was an increase in the
rate of switching at subtelomeric VAR loci as com-
pared to switching at the internal loci. By all means,
a closer look at the subtelomeric DNA of these para-
sites and a search for protosilencers, boundary, and/
or anti-silencing elements and factors is warranted.
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Repression of the varying genes

Lessons from budding yeasts have provided a basic
framework for the understanding of this process in para-
sites. The central mechanism of the spreading of deace-
tylation from the telomeres operates in these and many
other eukaryotes (Figure 2A) [15,52]; however, some ex-
ceptions need to be mentioned. As in budding yeast,
Sir2p is a critical factor for the silencing of the varying
genes in P. falciparum and C. glabrata, but it is not
essential for the VSGs in T. brucei and its role in P.
carinii is unknown [11,35,40,49,56-58,76]. Similarly, the
telomere-binding protein Rapl is essential for telomeric
silencing in T. brucei and C. glabrata [56], but no evi-
dence for its role in Plasmodium or Pneumocystis is
available. Another feature that appears conserved be-
tween parasites and yeasts is the existence of histone
variants that are specific to silent and active chromatin.
In S. cerevisiae, H2A.Z antagonizes telomeric silencing
and is enriched at chromatin boundaries [77]. A similar
but more complex exchange of histones functions in P.
falciparum where the unusual H2A.Z/H2B.Z double-
variant nucleosomes are prevalent at active genes, but
are excluded from silenced VAR genes [78]. Histone
variants have also been described in T. brucei, but their
relevance to gene silencing, if any, is not clear [79,80].

The methylation of histones poses even greater uncer-
tainty. Methylation at specific K/R residues is associated
with both gene activation and gene repression and is cat-
alyzed by two classes of histone methyltransferases, SET
and DOT1 [81]. In S. cerevisiae, the trimethylation of
H3K79 by Dotlp has long been considered a key event
in telomeric silencing [81], while the methylation of
H3K36 by Set2p has been continuously linked to active
transcription [82]. It was surprising to learn that the
methylation of H3K36 by P. falciparum variant-silencing
SET (PfSETvs) was critical for the repression of VAR
genes in P. falciparum [39]. In T. brucei, the deletion of
DOTIB does not lead to a general derepression, but in-
creases the duration of the epigenetic switch [24]. In
summary, although histone methylation at specific resi-
dues certainly contributes to gene silencing, significant
variations between different parasites and S. cerevisiae
could be expected.

Where does this notion lead us? It is feasible that the
disruption of histone acetylation and methylation will
preclude gene silencing and will cause the expression of
many if not all of the varying genes. Indeed, it has been
shown that the deletion of the homologues of SIR2,
DOT1, or SET2 can produce pathogens that display mul-
tiple antigens [24,39,58]. These mutants, when properly
attenuated, can be used for the successful generation of
vaccines. Currently, the lack of vaccines is one of the
most haunting issues in malaria and sleeping sickness
[7,39,83-85]. In this respect, the gained knowledge of
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gene silencing can deliver a major breakthrough in the
prevention of these devastating maladies. It is also con-
ceivable that the drug targeting of the parasite homo-
logues of the Sir2, Rapl, Set2, or Dotl proteins can be
used to combat the infections. To date, inhibitors of
histone deacetylases or methyltransferases have shown
promise under laboratory conditions [38,86]. However,
this approach certainly needs fine-tuning. Because the
varying surface antigens are directly linked to morbidity,
their potential overexpression could produce ‘super-path-
ogens’ in the patients and will offset any gain in immunity.
The risk of such a possibility has been demonstrated
in vitro in C. glabrata [87].

Reversible epigenetic switches
An alternative to the risky and harmful overexpression
of surface antigens is the reduction in the frequency of
epigenetic switches. The rationale is that the immune
system would gain ample opportunity to combat and
clear the parasite. Unfortunately, the actual mechanisms
of epigenetic conversions in S. cerevisiae or in the patho-
gens are not known [52]. While many regulators of TPE
have been identified, the majority of them expand or con-
tract the subtelomeric heterochromatin domain [15,88].
Hence, they do not necessarily alter the frequency of
switching. Mutations in other regulators produce higher
levels of the expression of otherwise silenced reporters
[89,90], but it is hard to tell if modest loss of repression or
frequent epigenetic conversions have yielded these results.
A decrease in the rate of switching is a reliable crite-
rion for true deregulation, but it is rarely observed. To
our knowledge, only one study in parasites (7. brucei)
has shown such an effect. As mentioned above, in this
species the deletion of DOTIB retards the epigenetic
switch to a point where the cells express two VSGs for
weeks [24]. Interestingly, in S. cerevisiae the trimethyla-
tion of H3K79 (it is catalyzed by Dotlp), but not DOT1
itself, increases the rate of the silencing establishment
[91]. Five other studies in S. cerevisiae have reported the
so-called ‘enhanced memory for heritable transmission’.
Two of them have characterized mutations in histone
H4, which increase the stability of both the repressed
and the active states of subtelomeric reporters [92,93].
Two other papers [94,95] have pointed out that SIRI al-
ters the frequency of conversion at the mating type loci.
Sirlp binds to dormant origins of DNA replication
(these act as silencers of the mating loci) and recruits
Sir2p [53]. Recently, we reported that the deletion of
CACI reduces the frequency of epigenetic conversions
of subtelomeric reporters [96]. Caclp is a component of
chromatin assembly factor I (CAF-I), which travels along
with the replication forks and reassembles H3/H4 into
nucleosomes on newly synthesized DNA [97]. It seems
that both local silencers and the passage of replication
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forks act to occasionally change the epigenetic state of
genes.

It is of particular interest that a replication fork factor
contributes to epigenetic conversions. It is well known
that the passage of the fork disperses the existing nucle-
osomes [52]. The subsequent reassembly combined with
subtle variations in the abundance of variant gene-
specific factors could both bestow the opportunity for a
switch, as depicted in Additional file 1. This notion is in
tune with the observations in S. cerevisiae and P. falcip-
arum that the establishment of silencing requires a pas-
sage through S phase [7,52]. In a similar vein, a recent
study in P. falciparum has demonstrated that the reposi-
tioning of a gene (P. falciparum reticulocyte binding
protein-like homologue 4, PfRh4) to an active site in the
nuclear periphery is associated with more frequent active
to silent epigenetic switching [98]. It is attractive to
speculate that these conversions are promoted by the
open chromatin environment and that both replication
forks and the state of existing nucleosomes determine
the frequency of epigenetic switches. At present, CAF-I
is the only candidate that could potentially confer re-
duced switching and non-varying phenotype in the para-
sites. However, other histone chaperones such as the
homologues of the yeast ASFI, Rtt106, FACT, or HST
should be considered. The exploration of this possibility
may generate new drug targets and a truly new class of
anti-pathogen drugs.

Conclusions

Parasites like Plasmodium and Trypanosoma cause dev-
astating maladies in millions of people and are a leading
cause of death in many developing countries. Others such
as Pneumocystis could be deadly opportunistic agents.
They all share a common powerful weapon: antigenic
variation. The remote yeast S. cerevisiae has provided a
paradigm and a framework to study positional effects,
which are very relevant to the underlying mechanisms of
antigenic variation. In the opinion of the authors, re-
searchers need to turn more often to yeasts for clues on
how to disarm such pathogens.

Additional file

N
Additional file 1: Model for epigenetic conversions driven by subtle
fluctuations of activators and/or silencing factors. (1) All but one of a
family of hypothetical varying genes (VG1 to VGN) are maintained in a
silenced state. These genes are flanked by a subtelomeric anti-silencing
region (STAR) and a chromatin boundary (B). (2) A subtle increase in the
abundance of gene activators (green circle) and/or factors that engage
STAR (purple circle) and the concomitant passage of replication forks
would allow the activators access to the promoters of the VG genes and
(3) would predispose all VG loci to derepression. (4) Consequently, during
the next stage (re-establishment of silencing), the derepressed VG genes
(VG2 to VGN, pink) will compete with the currently active gene (VGI, red).
(5) During this stage, a decline in the abundance of activators and
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STAR-acting factors would aid in the formation of heterochromatin and
the limiting activators would be gradually sequestered to a single locus.
There is a high probability that the currently active gene (VGT) will be
reinstated as the active locus. However, switches to another gene are
possible (VGN). The likelihood of such switches, depicted by the width of
the arrow, represents the frequency of epigenetic conversions.
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