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Abstract

Background: Altered DNA methylation patterns represent an attractive mechanism for understanding the phenotypic
changes associated with human aging. Several studies have described global and complex age-related methylation
changes, but their structural and functional significance has remained largely unclear.

Results: We have used transcriptome sequencing to characterize age-related gene expression changes in the human
epidermis. The results revealed a significant set of 75 differentially expressed genes with a strong functional relationship
to skin homeostasis. We then used whole-genome bisulfite sequencing to identify age-related methylation changes at
single-base resolution. Data analysis revealed no global aberrations, but rather highly localized methylation changes,
particularly in promoter and enhancer regions that were associated with altered transcriptional activity.

Conclusions: Our results suggest that the core developmental program of human skin is stably maintained through
the aging process and that aging is associated with a limited destabilization of the epigenome at gene regulatory
elements.
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Background
Epigenetic mechanisms regulate the interpretation of
genetic information and are thus intricately linked to
cellular differentiation and tissue specification. Epigenetic
mechanisms include DNA methylation and covalent
histone modifications [1,2]. These mechanisms work in a
coordinated manner during development and differenti-
ation to execute specific gene expression programs [3,4].
DNA methylation is a conserved epigenetic mechanism

with a well-known role in cell fate specification [5,6]. In
mice, this function appears to be essential for organismal
development, as genetic deficiencies for DNA methyl-
transferases cause severe developmental phenotypes
and embryonic lethality [7,8]. More recently, significant
attention has also been focused on adaptive functions
of DNA methylation, which could provide the foundation
for the integration of environmental signals [9]. Initially
observed as epigenetic variations between monozygotic
* Correspondence: f.lyko@dkfz.de
1Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research
Center, Im Neuenheimer Feld 580, Heidelberg 69120, Germany
Full list of author information is available at the end of the article

© 2013 Raddatz et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
waiver (http://creativecommons.org/publicdom
stated.
twins [10], age-related methylation differences have
now been described in several independent studies and
tissues [11]. The results suggested that aging induces
global and complex changes in the human methylation
landscape [12-15]. However, it is presently unclear how
these epigenetic changes affect the gene expression patterns
of aging human tissues.
We have previously used array-based methylation

profiling of skin samples obtained from young and old
volunteers and identified a defined set of genes that
were hypermethylated in aged skin [16]. In the course
of this study, two important features were identified
that established the epidermis as an important tissue
for further analysis: i) epidermis samples can be obtained
by non-invasive procedures and are characterized by a
very high degree of cell type homogeneity (>90% keratino-
cytes), which greatly facilitates the identification of defined
methylation patterns; and ii) the epidermis represents a
tissue with high functional relevance for human health
and disease and shows a well-known aging phenotype
[17]. Furthermore, it has also been shown that the
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DNMT1 DNA methyltransferase is functionally required
for proper tissue homeostasis in the human epidermis [18].
Aging is a multifactorial process that results in a pro-

gressive loss of regenerative capacity and tissue func-
tionality. It has previously been suggested that these
pathological changes are underpinned by a genome-wide
loss of methylation marks [15]. We have now used
transcriptome sequencing to identify genes that are dif-
ferentially expressed in the young (18–24 years) and
old (70–75 years) human epidermis. This revealed a
highly specific set of 75 genes with strong functional
relevance for human skin homeostasis. We also used
whole-genome bisulfite sequencing to generate methy-
lation maps from the same tissue samples. We find that
the aging epidermis methylome is characterized by
considerable stability and does not show any global
methylation loss. However, local age-related methylation
changes could be observed, and were enriched at weak
or poised promoters and at enhancer regions, thus
suggesting a functional relevance of epigenetic mechanisms
for skin aging.

Results
The transcriptome of the aging human epidermis
Primary human epidermis samples were obtained as
suction blisters from the inner forearm of five female
donors from two distinct age groups (18–24 years and
70–75 years, see Additional file 1: Table S1 for details),
respectively. These two age groups provide a good
representation of the skin aging phenotype in healthy
adults [17]. After RNA purification, samples were pooled
in equimolar ratios to allow library preparation for
transcriptome sequencing. Pooling of samples was required
to obtain sufficient amounts of mRNA for library prep-
aration. Paired-end sequencing on an Illumina HiSeq
2000 platform with read-lengths of 105 bases generated
90 Gb of DNA sequence. After trimming to a maximal
read length of 80 bases and a minimum base quality of
a 30 Phred score, sequence reads were mapped to the
GRCh37/hg19 reference sequence using TopHat [19].
The resulting average strand-specific genome coverages
were 500x for each sample (Table 1).
Overall, the epidermis transcriptome was characterized

by high expression levels of epidermis-specific genes,
Table 1 Sequencing data

Sample Age range Sequencing Number of read

Young (n = 5) 18–24 Transcriptome 225,332,853

Methylome 344,185,333

Old (n = 5) 70–75 Transcriptome 221,387,474

Methylome 334,873,828

Coverage indicates the average strand-specific genome or transcriptome coverage.
of co-purified mitochondrial genomes that were considered as unmethylated. Mitoc
n. d.: not determined.
such as various epidermis keratins and the epidermis
structural genes Loricin and Filaggrin (Table 2). Genes
that are predominantly expressed in cells of mesenchymal
origin, such as Vimentin and Desmin, could not be
detected or were only expressed at low levels (Table 2),
which is in agreement with the substantial cell-type
homogeneity of the samples used for this study. The
expression patterns of these genes appeared highly
similar in the young and old epidermis (Table 2), thus
reflecting the stability of the core epigenetic program
of differentiated human tissues. In agreement with this
notion, gene expression levels for DNA methylation
enzymes, such as DNMTs and TETs and their known
cofactors DNMT3L and UHRF1, were low and also
appeared very similar in the old and young samples
(Table 2).
To systematically identify genes that were differentially

expressed in the young and the old sample, we used
DESeq [20]. This revealed 75 genes with a statistically
significant difference (Q <0.05, Additional file 2: Table S2),
suggesting that the young and old epidermis transcriptomes
were similar overall. This similarity was also confirmed
by the relatively small effect size of age-related differential
gene expression (Figure 1A). We also used an independent
algorithm for differential expression analysis, Cuffdiff 2
[21]. This identified an overall similar number of 107
differentially expressed genes. Notably, out of the 75
genes identified by DESeq, 68 were also identified by
Cuffdiff 2 (Figure 1B). This substantial overlap suggests
that aging of the human epidermis affects the expression
of a specific set of genes.
Further analysis of differentially expressed genes iden-

tified several factors that have previously been implied in
skin homeostasis. For example, connective tissue growth
factor (CTGF), which has been shown to be an import-
ant factor in skin aging [22], was expressed at distinctly
lower levels in the old epidermis (Figure 1C). We also
used pathway analysis of differentially expressed genes
to further characterize the functional effects of age-
related differential gene expression. This revealed that
genes involved in cell migration (P = 1.17 × 10-16), cancer
(P = 9.55 × 10-13), dermatological diseases (P = 2.07 × 10-11)
and cell proliferation (P = 1.4 × 10-10), constituted the cat-
egories with the most significant enrichment (Figure 1D).
pairs Mapping efficiency Coverage Conversion rate

89% 500x n. d.

69% 11.3x 99.84%

88% 500x n. d.

74% 11.9x 99.88%

Bisulfite conversion rates were determined by analyzing the conversion rates
hondrial genome coverages were 1319x (young) and 1643x (old), respectively.



Table 2 Expression levels of epidermis genes and DNA methylation factors

Gene group Gene Expression (young) Expression (old) q value

Epidermis keratins KRT1 14719.2 14954.2 1.0

KRT2 7291.7 6154.7 1.0

KRT5 5860.6 5247.7 1.0

KRT10 26232.1 23374.7 1.0

KRT14 5665.0 4430.4 1.0

KRT15 382.1 400.1 1.0

Epidermis structural factors LOR 613.4 427.3 1.0

FLG 558.1 501.3 1.0

FLG2 322.5 336.5 1.0

Fibroblast markers (dermis) VIM 41.0 54.0 1.0

DES <0.1 <0.1 1.0

DNA methylation factors DNMT1 9.5 7.3 1.0

DNMT3A 1.5 1.2 1.0

DNMT3B 1.4 1.5 1.0

DNMT3L <0.1 <0.1 1.0

UHRF1 1.3 1.2 1.0

TET1 0.1 0.1 1.0

TET2 8.4 6.9 1.0

TET3 18.8 14 1.0

Expression levels represent FPKM values [21]; levels >1 indicate expression; q values were calculated by DESeq [20].
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In addition, functional annotation of differentially ex-
pressed genes also showed a highly significant enrichment
of genes involved in the development of the epidermis
(P = 9.63 × 10-4), which also included downregulation of
SPRR1A and B, KRT16 and KRT17 in old samples. In
agreement with this finding, expression of genes involved
in differentiation of keratinocytes was also altered in
old samples, indicating an overall downregulation of
differentiation (P = 1.43 × 10-7). Altogether, our results
thus suggest that deregulation of a relatively small set
of genes could contribute to the phenotypic changes
associated with human skin aging.
To further analyze the patterns of differential gene

expression, we experimentally validated the differential
expression levels of defined genes in 18 individual epi-
dermis samples from the two age groups (9 young and
9 old). For these experiments, we selected 15 genes
with a functional annotation related to skin homeostasis
that had shown different degrees of age-related down-
regulation in our RNA-seq analysis. The results showed
significant (P <0.05, Mann-Whitney U test) differential
gene expression for 8 out of 9 genes that had shown
a ≥2-fold expression change in our RNA-seq analysis
(Figure 2). For genes with a fold change of <2, significant
differential expression was only observed in 2 out of 6
genes (Figure 2). These findings provide important
confirmation for our transcriptome sequencing results
and suggest that age-related gene deregulation occurs
with a substantial degree of population homogeneity.
The methylome of the human epidermis
Having shown that aging is associated with the deregulation
of a highly defined set of genes, we used whole-genome
bisulfite sequencing to establish DNA methylation maps
at single-base resolution. DNA was purified from the
same epidermis samples that were used for transcriptome
sequencing (Additional file 1: Table S1). Pooling of
samples was necessary to achieve sufficient amounts
of DNA for library preparation and has been previously
used to reduce the effects of stochastic epigenetic variation
[23]. Paired-end sequencing on an Illumina HiSeq 2000
platform with read-lengths of 105 bases generated 137 Gb
of DNA sequence. After trimming to a maximal read length
of 80 bases and a minimum base quality of a 30 Phred
score, sequence reads were mapped to the GRCh37/hg19
reference sequence using a mapping tool based on BSMAP
2.0. The resulting average strand-specific genome coverage
was 11.3x (young) and 11.9x (old). We also determined
the bisulfite conversion rate by analyzing mitochondrial
sequences that were co-purified during the sample
preparation and that we considered as unmethylated. These
sequences showed a bisulfite conversion rate of >99.8%
(Table 1), suggesting highly effective bisulfite treatment.



Figure 1 The transcriptome of the aging human epidermis. (A) MA plot showing fold change between young and old in relationship to
the mean expression level. Red marks indicate genes with significant differential expression, as determined by DESeq analysis. (B) Venn diagram
showing the overlap in differentially expressed gene sets, as determined by DESeq (green) and by Cuffdiff 2 (orange). (C) Connective Tissue
Growth Factor (CTGF) is shown as a representative example for a differentially expressed gene. RNA-seq coverage is indicated for young (blue)
and old (red) samples. (D) Ingenuity pathway analysis of differentially expressed genes. The plot shows the four most significantly enriched
functional categories.
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Initial data analysis revealed that the human epidermis
shares many basal features with published epigenomes
from differentiated cultured human cell lines [3,4,24,25].
For example, the vast majority (>99.9%) of non-converted
cytosines were found in a CpG dinucleotide context
(Figure 3A), which is consistent with the overall de-
amination efficiency and in agreement with the notion
that non-CpG methylation is largely restricted to em-
bryonic stem cells [24]. Furthermore, methylation ratios
of individual CpG dinucleotides revealed a characteristic
bimodal distribution (Figure 3B). A major fraction of CpG
dinucleotides (about 50%) showed complete methylation,
as indicated by a methylation ratio of >0.95 (Figure 3B).
Roughly 10% of the CpGs were completely unmethylated
(methylation ratio <0.05), while 40% of the CpG dinu-
cleotides showed partial methylation ratios between
0.05 and 0.95 (Figure 3B). The average CpG methylation
ratio was 0.74 (Figure 3C), which is again consistent with
the CpG methylation ratios observed in other human
datasets. Furthermore, average methylation ratios of
promoter-associated CpGs were distinctly lower than
the genome average, while gene bodies and intergenic



Figure 2 Validation of differential age-related gene expression in individual tissue samples. qRT-PCR was performed on RNA from epidermal
suction blisters of 18 healthy female volunteers (9 young and 9 old volunteers). The heatmap shows processed ΔCt values. Gene expression differences
of individual samples are indicated relative to the gene-specific, age-independent average expression level over all samples (blue: lower ΔCt, red: higher
ΔCt). Numbers in the left colum indicate fold-change differences in gene expression between young and old, as determined by transcriptome sequen-
cing. P values were determined by a Mann-Whitney U test and indicate the significance for differential gene expression. The line between VCL and
RHPN2 separates genes with a ≥2-fold change in gene expression from genes with a <2-fold change.
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regions showed higher methylation levels (Figure 3C),
which is again similar to other published datasets.
Overall, the methylation patterns of the young and old

samples appeared very similar. This was evident not only
by the average methylation ratios of individual genome
compartments (Figure 3C), but also in comparisons of
the global methylation landscapes (Figure 3D). A sliding
window approach identified only 50 differentially meth-
ylated windows of 100 kb (methylation difference >0.15),
with an equal number of hypomethylated and hyper-
methylated windows (Figure 3E). Similarly, a more local
analysis with sliding windows of 5 CpGs did not reveal
any directional changes in global methylation patterns
(Figure 3F). Together, these findings strongly suggest
that the global age-related methylation loss observed in
T-cells [15] is not conserved in the epidermis.

Identification and characterization of differentially
methylated regions
A visual inspection of the young and old methylation
landscapes also indicated the presence of small clusters
of differentially methylated CpG dinucleotides. To system-
atically identify differentially methylated regions (DMRs),
Fisher’s exact test was used to determine the CpG dinucle-
otides with a statistically significant (P <0.05) methylation
difference. These differentially methylated CpGs (DMCs)
were subsequently collapsed to identify regions of local,
coordinated methylation changes. DMRs were defined as
clusters of ≥8 DMCs with a distance of ≤50 bp between
neighboring DMCs and a net region-wide methylation
change of ≥8 DMCs. Only DMRs with an average sequen-
cing coverage of ≥8 and methylation difference of ≥10%
were used for further analysis. This identified 2,409 DMRs,
of which 1,437 were more strongly methylated in the
old sample, and 972 were more strongly methylated in
the young sample. DMRs were comparably small (<150 bp)
and associated with various gene regions. Notably, 1,156
of these DMRs overlapped with the variably methylated
regions that were recently identified through a compre-
hensive analysis of 42 human methylomes [26]. This
represents a robust (2.5-fold) enrichment over the genome
average and suggests that age-related methylation changes
affect epigenetic regulatory elements.
To further characterize the DMRs, we used the avail-

able ENCODE data [27,28] for normal human epidermal
keratinocytes. The results showed that DMRs that were
hypermethylated in the old sample were enriched
for H3K27me3 and H3K4me3, the defining chromatin
marks of poised promoters. In contrast, hypomethylated
DMRs that were hypomethylated in the old sam-
ple were enriched for H3K27Ac and also H3K4me1
(Figure 4A), which represent established marks of en-
hancers. We then used the available ChromHMM an-
notation for normal human epidermal keratinocytes [29]
to assign our DMR datasets to defined chromatin states
(Additional file 3: Table S3). Subsequent data analysis
showed a distinct enrichment of DMRs in promoters and
enhancers (Figure 4B), which confirms and expands previ-
ous observations on age-related methylation changes
[13,14]. Furthermore, enhancer-associated DMRs showed



Figure 3 (See legend on next page.)
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Figure 3 The methylome of the aging human epidermis. (A) Dinucleotide context of non-converted cytosine residues. (B) Methylation levels
of individual CpG dinucleotides. Average methylation levels were determined for all covered CpG dinucleotides and then distributed into bins
with increasing methylation ratios. Percentages indicate the fractions of unmethylated (light orange), partially methylated (orange) and completely
methylated (dark orange) CpGs. (C) Average DNA methylation ratios of the genome (all), promoters, gene bodies and intergenic regions are shown for
the young (blue) and old sample (red), respectively. (D) The methylation pattern of chromosome 8, shown in tracks of 100-kb windows. The
blue line indicates the young sample, the red line indicates the old sample. (E) Density plot of average methylation ratios for 100-kb windows
covering the entire genome. Numbers indicate the number of windows with a methylation difference >0.15 (dotted line). (F) Density plot of
average DNA ratios for 5-CpG windows covering chromosome 4.
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a strong bias towards age-related hypomethylation
(Figure 4B), which might reflect age-related activation
of enhancers. Interestingly, active promoters showed
no enrichment for DMRs (Figure 4B), which is again
consistent with the comparably small effect size for age-
related differential gene expression (Figure 1A).
A visual inspection of DMRs provided further insight

into their characteristic features. For example, the ERBB
receptor feedback inhibitor 1 (ERRFI1) promoter region
harbors a DMR in the shore region of the promoter-
associated CpG island (Figure 4C). ERRFI1 is required
for proper epidermal homeostasis [30] and was found
to be hypermethylated and expressed at lower levels in
old epidermis samples (Figure 4C). Another example
for a DMR was identified in the low-density lipoprotein
receptor (LDLR) gene region (Figure 4D), and was located
in an annotated active enhancer element (Additional file 4:
Figure S1). The DMR showed complex, but coordinated
age-related methylation changes that were associated
with lower expression levels of LDLR in the old sample
(Figure 4D). Defects in the LDLR gene are the cause of
familial hypercholesterolemia, which underlies the forma-
tion of Xanthelasma [31], a dermatological lesion often
found in the elderly population. These examples illustrate
how age-related methylation changes can have relatively
subtle, but significant expression changes on genes
that are relevant for proper skin homeostasis. Further
experiments will be required to determine the functional
relevance of individual differentially methylated and
expressed genes for the aging phenotype.

Discussion
Whole-genome bisulfite sequencing represents a powerful
method to generate genome-wide methylation maps at
single-base resolution [24,32]. This approach was re-
cently used to characterize the methylomes of purified
CD4+ T-cells from a newborn and a centenarian [15].
The results showed a pronounced destabilization of the
aging epigenome, which was characterized by a widespread
loss of methylation marks. Our analysis failed to detect
any quantitative differences in the global methylation
levels of young and old individuals. This can most likely
be attributed to the different tissues used in both studies:
while our analysis is based on primary epidermis samples,
Heyn et al. [15] used purified CD4+ T-cells. Based on the
specific features of T-cell differentiation and priming, it is
conceivable that the epigenetic program of these cells is
characterized by a particularly high degree of plasticity.
On a global level, the transcriptomes and methylomes of

the young and old epidermis appeared to be substantially
similar. This is an important finding, because it illustrates
the fundamental stability of the tissue-specific methylation
landscape, which is required for the stable maintenance
of cell type identity. Age-related methylation changes
were limited to specific local alterations, which confirms
and expands our previous observations [16]. With a size
of 100–150 bp, age-related DMRs were considerably
smaller than other known structures of the human methy-
lome, such as DNA methylation valleys [3] and partially
methylated domains [23-25,33,34], which extend over tens
and hundreds of kilobases of DNA sequence, respectively.
Further analysis will be required to understand the epigen-
etic regulatory function(s) of these elements.
Interestingly, our data also suggest that a significant

fraction of the DMRs might represent enhancers that
become aberrantly methylated during aging. The methyla-
tion status of enhancer-associated CpG dinucleotides
has recently been described to be closely associated with
epigenetic gene deregulation in human cancers [35,36].
Our data identify similar elements at single-base resolution
and suggest that the differential methylation of enhancers
might be involved in age-related gene deregulation.
Finally, our analysis identified several examples for

hypermethylated DMRs in promoter regions. Promoter
hypermethylation has been closely associated with gene
silencing and plays an important role in the etiology of
human tumors [37,38]. Furthermore, our data indicate
an association of hypermethylated DMRs with bivalent
chromatin structures. Similar results have been described
in independent studies investigating age-related methyla-
tion changes in other tissues [13,14]. Bivalent chromatin
modifications are a specific feature of stem cells and are
not usually found in differentiated tissues like epidermis.
The particular enrichment of age-related hypermethyla-
tion in promoters that are annotated as “bivalent” might
therefore reflect epigenetic changes in aging epidermal



Figure 4 (See legend on next page.)
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Figure 4 Characterization of differentially methylated regions (DMRs). (A) Hypermethylated and hypomethylated DMRs show distinct
chromatin states. DMRs that become hypermethylated in old epidermis (hyperDMRs) are enriched for H3K4me3 and H3K27me3, while DMRs that
become hypomethylated in old epidermis (hypoDMRs) are enriched for H3K27ac. Numbers below the x-axis indicate the distance from the center
of the DMR (dashed vertical line) in bp. (B) Enrichment of DMRs within defined genome segments. Bars indicate the ratio of the observed DMR
frequency and the average frequency across the genome. Blue bars represent DMRs that are hypomethylated in the old epidermis, red bars represent
DMRs that are hypermethylated in the old epidermis. (C) The ERBB receptor feedback inhibitor 1 (ERRFI1) promoter region harbors a representative
DMR. ERRFI1 is required for proper epidermal homeostasis [30] and is expressed at lower levels in old epidermis samples (right panel, blue
and red bars indicates expression in the young and old epidermis samples, respectively). Blue lines indicate methylation ratios in the young
epidermis, red lines indicate methylation ratios in the old epidermis. The green bar indicates the position of the ERRFI1 promoter CpG island. (D) An
annotated active enhancer element from the low-density lipoprotein receptor (LDLR) gene region harbors a DMR. Age-related methylation changes
that were associated with lower expression levels of LDLR in the old sample (right panel, blue and red bars indicates expression in the young and old
epidermis samples, respectively), which may promote the formation of Xanthelasma, a dermatological lesion often found in the elderly population.
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stem cells, and may underpin the decreased regenerative
capacity of aging stem cells [39].

Conclusions
Age-related DNA methylation changes have been described
in various studies but their defining features and functional
significance remain to be established. Our results show
that the age-related genome-wide loss of DNA methy-
lation observed in T-cells [15] is not conserved in the
human epidermis, suggesting that the core developmental
program of at least some human tissues is maintained
through the aging process. Furthermore, our study
represents the first to use transcriptome sequencing to
explore the consequences of age-related epigenetic changes.
Our results identified limited transcriptional changes
that may underpin the aging phenotype. Finally, we
identified several hundred highly localized elements
with robust methylation differences between young and
old. Interestingly, these elements were enriched for gene
regulatory chromatin marks and many of them were
associated with promoters and enhancers. Our study
thus provides an important mechanistic framework for
understanding age-related epigenetic deregulation.

Methods
Sample preparation for sequencing
Epidermal suction blister samples were collected according
to the current version of the Declaration of Helsinki
and the guideline of the International Conference on
Harmonization Good Clinical Practice (ICH GCP) was
observed as applicable to a non-drug study. All volunteers
provided written, informed consent. Suction blister
samples were obtained at the study center of Beiersdorf
AG and approved by the Beiersdorf AG Legal Review
Board. Briefly, epidermis samples were detached from
the forearms of 10 healthy female volunteers by applying
a negative pressure of 150–250 mmHg for 2 h. Subse-
quently, suction blister roofs were taken and immediately
stored in liquid nitrogen. For nucleic acid isolation,
suction blister samples were washed in DPBS (Cambrex,
Verviers, Belgium) and homogenized using a TissueLyser
(Retsch, Haan, Germany). DNA and RNA from suction
blister samples were isolated using the QIAamp DNA
Investigator Kit (Qiagen, Hilden, Germany) and RNeasy
Fibrous Tissue Kit (Qiagen), respectively, according to
the manufacturer’s instructions. The Poly(A)Purist MAG
Kit (Ambion, Darmstadt, Germany) was used for mRNA
selection.
Sequencing
Library preparation for bisulfite sequencing was performed
as described previously [40]. Transcriptome sequencing
libraries were prepared using the TruSeq RNA Sample
Preparation Kit (Illumina, San Diego, USA), according to
the manufacturer’s instructions. Paired-end sequencing
was performed on an Illumina HiSeq system with read
lengths of 105 base pairs and an average insert size of
200 bp.
Transcriptome mapping and quantification of
differential expression
RNA-seq reads were trimmed to a maximal length of
80 bp and stretches of bases having a quality score <30 at
the ends of the reads were removed. Reads were mapped
using Tophat 2.0.6 [19]. As reference sequence for the
transcriptome mapping we used the current assembly of
the human genome (hg19). Differential expression was
quantified using DESeq 1.10.1 [20] applying the built-in
procedures for library normalization and estimation of
variance and with Cuffdiff 2.0 [21]. The resulting P values
were subjected to multiple testing correction using built-
in functions available in DESeq and Cuffdiff, respectively.
Genes with a q value smaller than 0.05 were considered as
differentially expressed.
Pathway analysis
Pathway analysis of differentially expressed genes was
performed using IPA (Ingenuity Systems), using a P
value cutoff of <0.05 on differential expression and a
log fold-change of at least 0.263, corresponding to a
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minimum expression change of 30% between young
and old samples.

qRT-PCR
Total RNA was isolated from suction blister samples
(n = 18) using the RNeasy Fibrous Tissue Kit (Qiagen)
according to the manufacturer’s instructions. After reverse
transcription with the High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Darmstadt, Germany),
samples were analyzed by TaqMan-PCR using the
7900HT Fast-Real-Time PCR System (Applied Biosys-
tems). The following assays were used, according to the
manufacturer’s recommendations: CTGF (Hs01026927_g1),
SPRR1A (Hs00954595_s1), SPRR1B (Hs00234164_m1),
KRT16 (Hs00373910_g1), KRT17 (Hs01588578_m1), VCL
(Hs00247826_m1), HAS3 (Hs00193436_m1), FDZ10
(Hs00273077_s1), NPR3 (Hs00168558_m1), VPS37B
(Hs00226582_m1), ERRFI1 (Hs00219060_m1), PLIN2
(Hs00605340_m1), RHPN2 (Hs00369111_m1), RGMA
(Hs00297192_m1), PI4KB (Hs01090927_m1). Data were
analyzed utilizing the Sequence detector version 2.3
software supplied with the 7900 Sequence Detector
and RQ Manager 1.2. Quantification was achieved
using the ΔCt method which indicates expression of
the target gene relative to an endogenous reference
(GAPDH; Hs99999905_m1). ΔCt values were averaged
for all replicates of a gene/subject combination and for
every gene the mean value over all subjects was sub-
tracted, thus adjusting the average gene-specific ΔCt
value to zero. The processed ΔCt values were visualized
as heat maps. ΔCt values exceeding a threshold of 2.5
were set to 2.5.

Bisulfite mapping and methylation calling
Reads were trimmed to a maximal length of 80 bp and
stretches of bases having a quality score <30 at the ends
of the reads were removed. Reads were mapped using
BSMAP 2.02 [41]. As a reference sequence for the bisul-
fite mapping we used the current assembly of the human
genome (hg19). Only reads mapping with both partners
of the read pairs at the correct distance were used. The
CpG-specificity was calculated by determining the number
of cytosines called in all mapped reads at all non-CpG
positions and dividing it by the number of all bases in
all mapped reads at all non-CpG positions. Methylation
ratios were determined using a Python script (methratio.
py) distributed together with the BSMAP package. For
both the forward and reverse strands, all cytosine bases
in CG context were called independently.

Identification and characterization of DMRs
Fisher’s exact test was used to identify 3,004,806 CpG
dinucleotides with a statistically significant (P <0.05)
difference in their methylation ratios between the young
and the old datasets. Differentially methylated CpGs
were subsequently collapsed to identify regions of local,
coordinated methylation change. DMRs were defined
as clusters of ≥8 DMCs with a distance of ≤50 bp between
neighboring DMCs and a net region-wide methylation
change of ≥8 DMCs. Only DMRs with an average
sequencing coverage of ≥8 and methylation difference
of ≥10% were used for further analysis. ChIP-seq peaks
of histone modification marks in NHEK cells were
downloaded from the ENCODE website [29] and averaged
in 50 bp windows surrounding the DMR sites. Loess
smoothing with a span of 10% was applied. For the en-
richment analysis of DMRs in defined chromatin states,
the observed frequency (%) of DMRs centered in given
states (ChromHMM annotation data in NHEK cells,
ENCODE website) was divided by the genomic frequency
of the state.

Data access
Sequencing data have been deposited in the GEO database
under the accession number GSE46487.

Additional files

Additional file 1: Table S1. Samples used for sequencing. The table
shows a complete overview of all epidermis samples used for methylome
and transcriptome sequencing.

Additional file 2: Table S2. List of differentially expressed genes.
Differentially expressed genes were identified by DESeq using built-in
procedures for library normalization and estimation of variance. baseMean is
the average of baseMean (young) and baseMean (old) and indicates
the number of fragments per gene after library normalization, P values
were subjected to multiple testing correction using built-in functions
available in DESeq, leading to adjusted P values (“padj”). Genes with an
adjusted P value <0.05 were considered as differentially expressed and
are included in this table.

Additional file 3: Table S3. Association of DMRs with ChromHMM
segments. The table shows the results obtained from ChromHMM
segmentation of the human genome sequence, using ENCODE data for
normal human keratinocytes.

Additional file 4: Figure S1. Epigenomic analysis of the LDLR gene
region. UCSC Genome Browser tracks for DNA methylation and various
histone marks, based on ENCODE data for normal human keratinocytes.
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