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Abstract

Regulatory DNA elements such as enhancers, silencers and insulators are embedded in metazoan genomes, and
they control gene expression during development. Although they fulfil different roles, they share specific
properties. Herein we discuss some examples and a parsimonious model for their function is proposed. All are
transcription units that tether their target promoters close to, or distant from, transcriptional hot spots (or
‘factories’).
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Introduction
The complex linear organisation [1] of many metazoan
genomes encodes regulatory sequences that can be cate-
gorised into two major groups: enhancers and silencers.
Enhancers are short motifs that contain binding sites for
transcription factors; they activate their target genes
without regard to orientation and often over great
separations in cis or in trans [2]. Silencers suppress gene
expression [3] and/or confine it within specific chroma-
tin boundaries (and thus are also called ‘insulators’) [4].
The interplay between these contrasting regulatory ele-
ments, their target promoters and epigenetic modifica-
tions at all levels of three-dimensional organisation (that
is, nucleosomes, chromatin fibres, loops, rosettes, chro-
mosomes and chromosome location) [5-9] fine-tune
expression during development and differentiation.
However, the mechanisms involved in this interplay
remain elusive, although some can be computationally
predicted [10]. Although enhancers and silencers have
apparently opposite effects, accumulating evidence sug-
gests they share more properties than intuition would
suggest [11]. Herein we try to reconcile their apparently
disparate modes of action. We suggest they act by
tethering their target promoters close to, or distant
from, hot spots of nucleoplasmic transcription (known

as ‘transcription factories’) as they produce noncoding
transcripts (ncRNAs) [12-15].

Enhancers
Enhancers were characterised almost 30 years ago [16],
but their functional definitions vary because of their
flexibility of action (whether in cis or in trans) [17,18],
position (relative orientation and/or distance) and geno-
mic location (in gene deserts, introns and/or untrans-
lated regions) [2]. Although sequence conservation
between species can, in some cases, be an efficient pre-
dictor of enhancer identity, there are examples where
genes with identical expression patterns in different spe-
cies rely on enhancers that bear no similarities [19].
Within a single genome, however, sensitivity to DNase I
and characteristic modifications of histone tails provide
a more reliable means of identification. They typically
occupy approximately 200 bp of ‘open’ chromatin (mak-
ing them DNase-sensitive) [20], are flanked by regions
rich in mono- and/or dimethylated lysine 4 of histone
H3 (H3K4me1/H3K4me2) and acetylated lysine 27 of
histone H3 (H3K27ac) and, generally, bind p300 [21].
Attempts have been made to classify enhancers into
subclasses that are differentially used during develop-
ment. Comparison between mouse embryonic stem (ES)
cells, their differentiated derivatives and terminally dif-
ferentiated murine cells allow distinctions between
‘active’, ‘intermediate’ and ‘poised’ enhancers (here addi-
tional marks are used, for example, H3K27me3 or
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H3K36me3) [21]. These accessible DNA stretches are
often bound (and can thus be identified) by acetyltrans-
ferase p300, Mediator subunits, chromodomain helicase
DNA binding protein 7, cohesin and/or CCCTC-binding
factor (CTCF) [21,22]. Most importantly, canonical
enhancers are characterised by the presence of bound
RNA polymerase II (RNAPII) [23,24].
The first and most studied example of gene regulation

by an enhancer is provided by the b-globin locus; here,
the locus control region (LCR) is located 40 to 60 kb
upstream from the promoter it regulates. The two inter-
act when the chromatin fibre forms new, or rearranges
preexisting, loops [17,25]. All other cis-regulatory ele-
ments in this locus are also in close proximity, where
they form an ‘active chromatin hub’ [12,26]. An active
chromatin hub, as defined in the b-globin locus para-
digm, arises from the three-dimensional clustering of
DNA-hypersensitive sites, depends on specific DNA-
protein interactions and brings together all essential
components for transcriptional activation [17]. Similarly,
in a comprehensive study of the immunoglobulin heavy-
chain locus [6] (and many other loci), the multitude of
preexisting loops and connecting regulatory elements
are rearranged to form new ones that interact upon acti-
vation. Obviously, most of these conformations (and in
fact most seen using chromosome conformation capture
(3C)) concern a population of cells and will not be
refined until single-cell 3C is developed and
implemented.
Enhancers are transcribed into RNAs (eRNAs) that do

not encode proteins, run the length of the enhancer
sequence and appear to stabilise enhancer-promoter
interactions [11,24,27-29]. eRNAs derived from elements
upstream of the Arc promoter depend on the activity of
that promoter, as removing the promoter abolishes
eRNA production [28]. b-globin-associated ncRNAs are
still produced in the absence of the b-globin promoter
[28,30,31]. However, the rate at which eRNAs are turned
over, the exact mechanism by which they function and
their abundance (relative to the mRNAs they regulate)
all remain to be determined.
An additional class of ncRNAs longer than 200

nucleotides (long intergenic ncRNAs (lincRNAs)) were
found in a survey of human transcripts, and some
exhibited enhancer function [27]. In different human
cells, more than 3,000 lincRNAs have now been identi-
fied [32,33]. Some seem essential for the activation of
the thymidine kinase promoter, as well as for the
expression of neighbouring protein-coding genes
(although not all act as bona fide enhancers) [34]. For
example, HOTTIP (a lincRNA transcribed from the 5’
end of the HOXA locus) coordinates the activation of
several HOXA genes; chromatin looping brings HOTTIP

close to its targets, and this drives H3K4 trimethylation
and transcription [35].

Silencers
At the opposite functional extreme lie silencers. They
prevent gene expression during differentiation and pro-
gression through the cell cycle [36]. This again corre-
lates with RNA production (in some cases, through the
generation of RNA duplexes that underlie the methyla-
tion of DNA at the promoter [37,38]).
Accumulating evidence supports a broad and general

role of both long and short RNA molecules in transcrip-
tional inhibition. Antigene RNAs (agRNAs) are small
RNAs that target promoters and downstream regions
[37]. The expression of genes encoding progesterone,
low-density lipoprotein, the androgen receptor, cycloox-
ygenase-2, the major vault protein and huntingtin is
inhibited by agRNAs [37,39]. Similarly, miRNAs, which
are 20 to 22 nucleotides long, regulate gene expression
post-transcriptionally [40], and they may also act at the
level of transcriptional initiation or elongation. This is
now supported by deep sequencing of nuclear and cyto-
plasmic small RNA libraries, where the majority of
mature miRNAs localise in the nucleus (and not only in
the cytoplasm) [41]. For instance, introduction of
miRNA mimics that target the progesterone gene pro-
moter decreases RNAPII occupancy. It also increases
H3K9me2 levels in an Argonaute 2 (Ago-2)-dependent
manner and leads to gene silencing [42]. Note that
mature miRNAs in the nucleus can also act as ‘enhan-
cers’ [43].
Polycomb complexes PRC1 and PRC2 rely on non-

coding transcripts from silencing elements for recruit-
ment to target sites. A range of examples are
available: for instance, repression in cis in CD4+ T-
cells and ES cells (where PRC2-catalysed H3K27 tri-
methylation recruits PRC1 to prevent chromatin
remodelling of targeted loci [44]) and the PRC2-
HOTAIR interaction (where transcripts produced from
the XOXC locus establish repression of XOXD [33]).
In human breast cancer cells, overexpression of
HOTAIR results in the promiscuous association of
PRC2 with more than 850 targets, which are in turn
silenced [45]. Furthermore, in the well-studied cascade
of X chromosome inactivation, the ncRNA Xist binds
PRC2, which in turn drives H3K27 trimethylation
[46,47] and propagation of PRC1’s binding to multiple
sites along the silenced allele [48]. Here the three-
dimensional conformation is also critical for efficient
silencing and results in chromatin compaction and/or
rearrangement [49]. Such equilibria may, however, be
shifted by the eviction of Polycomb proteins to restore
an active state [47].
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Insulators
Functionally autonomous domains are strung along the
chromatin fibre, and these need to be insulated from
their neighbours to prevent the action of irrelevant
enhancers and silencers. Insulator or boundary elements
perform this task. These can be further categorised as
enhancer blockers (when the insulator is located
between a promoter and a cognate enhancer) and bar-
riers (when located between a promoter and a silencer)
[50]. Mutating or deleting insulators alters the pattern
of gene expression and leads to developmental defects
[51].
It has been suggested that insulators evolved from a

class of promoters binding a specific subset of transcrip-
tion factors that drive chromatin remodelling and long-
range interactions [11]. Many are marked by DNase I
hypersensitivity [52] and/or the presence of bound
RNAPII. Specifically, in the Drosophila Hox gene cluster,
stalled polymerases, in conjunction with elongation fac-
tors DISF and NELF, insulate four of eight promoters
from Hox enhancers, and this correlates with the rear-
rangement and/or de novo formation of chromatin loops
[53].
Perhaps the most abundant protein associated with

insulator activity is CTCF. In the well-studied example
of the Igf2-H19 imprinted locus, CTCF prevents activa-
tion of the maternal Igf2 allele by a distal enhancer.
When its cognate binding site is lost, the gene is reacti-
vated [54]. However, in this locus, CTCF is a positive
regulator of the H19 gene [45]. Moreover, CTCF med-
iates enhancer-promoter, insulator-insulator and

insulator-promoter interactions [11]. The insulator func-
tion of CTCF is regulated by cohesins [55,56]. Their
respective binding sites coincide in various cell types,
including the IL-3 and granulocyte-macrophage colony-
stimulating factor loci [57], as well as the renin, ETNK2
[58], CFTR [50,52] and c-Myc genes [59].
However, the CTCF-cohesin duplet is characteristic of

only one type of insulator or boundary. In a comprehen-
sive mapping of such Drosophila elements, additional
factors, such as boundary element associated factor,
GAGA and CP190, were used to identify and classify
domain boundaries [60]. Again, DNase I hypersensitivity
characterises many of these elements, and examples
exist where their function is Ago-2-dependent (and so
transcription-dependent, but RNAi-independent) [61].

A model
The following four models have been proposed to
describe gene regulation by enhancers (Figure 1). (1)
According to the tracking model, a protein loads onto
the enhancer and tracks along the chromatin fibre
towards the promoter, where it stimulates transcription
[62]. (2) The linking model is similar, but here the
loaded protein drives polymerisation of proteins in the
direction of the promoter [63]. (3) In the relocation
model, a given gene relocates to compartments in the
nucleus where enhancer-promoter interactions (and so
transcription) are favoured [64,65]. (4) The looping
model (which shares features with the relocation model)
predicts a direct contact between an enhancer and a
relevant promoter that loops out the intervening DNA

Figure 1 Existing models for the function of enhancers. The four existing models describing gene regulation by enhancers are depicted. (A)
The tracking model, where a transcription factor (purple hexagon) loads onto the enhancer and tracks along the chromatin fibre towards the
promoter, where it stimulates transcription by association with the polymerase (pink oval). (B) The linking model, where the loaded transcription
factor drives polymerization of proteins in the direction of the promoter. (C) The relocation model, where a gene relocates to nuclear
subcompartments (pink halo) favouring enhancer-promoter interactions, and so transcription. (D) The looping model, where the enhancer
comes into proximity with the relevant promoter due to protein-protein interactions. This loops out the intervening chromatin and triggers
transcriptional activation.
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[12,65,66] and thus is closely linked to the three-dimen-
sional genome architecture [1,7,65]. Next, activators
bound to the enhancer interact with the mediator com-
plex, which recruits RNAPII and general transcription
factors to the promoter [34,67]. This last model is now
favoured, as it readily explains enhancer-promoter inter-
actions in trans [18,68] and is supported by a wealth of
experimental data derived from 3C [69] and modelling
[1,6-10,15].
Similarly, among the three major models proposed for

insulator function (roadblock, sink/decoy and topologi-
cal loop models), the topological loop model is best sup-
ported by experimental data: Rearrangement and/or de
novo formation of appropriately oriented loops effi-
ciently insulate promoters from enhancer elements [70].
Note also that recent data show how gene repression
dependent on gypsy insulators in Drosophila propagates
between distant loci to be repressed via the organisation
of local loops [71].
Gene regulation from distal regulatory elements via

local looping or broader rearrangements in three-dimen-
sional organisation is now widely accepted. For example,
we have seen that the b-globin LCR loops back to its
target promoter to activate it [17] through an active
chromatin hub [12,26], whereas Gata-1 represses the Kit
gene locus via specific loop formation and exchange
with Gata-2 reforms the enhancer-promoter loop and
reactivates expression [72]. The IgH locus is another
example of how this might occur, because its approxi-
mately 2.7-Mbp region is reorganised spatially during
activation [6]. Similarly, various transcription factors
have been implicated in forming regulatory chromatin
loops, including EKLF [26]; Gata-1, Gata-2 and Gata-3
[72]; CTCF [73,74]; Ldb1 [75]; and cohesin [56,76].
Knocking them out or down results in loss of looping
and changes in transcriptional state [26,77,78].
On a broader scale, the genome is organised nonran-

domly in three-dimensional space [1,6-10,15] as a result of
a variety of chromatin loops and rosettes [15,64,79], and
the idea that transcription is also architecturally organised
is gradually gaining ground [13-15]. It has been proposed
that the transcription of protein-coding genes occurs in
nucleoplasmic hot spots (that is, transcription factories)
where a high local concentration of the required molecular
machinery renders the whole process more efficient
[14,15]. By definition, these harbour at least two RNA
polymerases, each transcribing a different template. The
b-globin active chromatin hub can be classified as a tran-
scription factory, as it contains at least two polymerases:
one transcribing the enhancer and another transcribing a
protein-coding gene. Not only do active genes tend to
colocalise in the nucleus to be transcribed [80,81], but dif-
ferent types of genes seem to cluster in ‘specialised’ tran-
scription factories, where they are coregulated and

expressed. For example, RNAPII genes are transcribed in
separate factories from RNAPIIIgenes, whereas erythro-
poietic genes and TNFa-responsive genes are copied at
sites distinct from those of constitutive and/or nonrespon-
sive ones [75,82-88]. Although factories with different
polymerising activities can now be isolated and their pro-
teins characterised using mass spectrometry [89], the
mechanism by which factories are ‘marked’ by specific
transcription factors and the relative representation of dif-
ferent subtypes of factories remain undetermined.
How can these ideas be extended to explain the func-

tion of enhancers and silencers and/or insulators? As we
have established, all share common features (for exam-
ple, DNase I hypersensitivity, active chromatin marks
and interaction with transcription factors and RNAPII);
therefore, we propose that canonical regulatory elements
are primarily transcription units (Table 1) and that, in

Table 1 Examples of genes or loci associated with
enhancers, silencers or insulatorsa

Gene/locus Association Type Reference

IgH locus mU element Enhancer [6]

b-globin locus LCR Enhancer [12,17,26]

Kit -114 kb Enhancer [72]

Arc promoter eRNA Enhancer [28]

HOXA locus HOTTIP Enhancer [35]

Prostate cancer cells Androgen receptor Enhancer [20]

Sox2 SRR1/2 Enhancer [90]

HO-1 +12.5 kb Enhancer [91]

Progesterone receptor agRNA, miRNA Silencer [39,41]

Androgen receptor agRNA Silencer [37]

Cyclooxygenase-2 agRNA Silencer [37]

LDL receptor agRNA Silencer [37]

Major vault protein agRNA Silencer [37]

Huntingtin agRNA Silencer [37]

Various target genes Polycomb Silencer [44]

INK4-ARF locus Polycomb Silencer [100]

XOXD locus HOTAIR Silencer [33]

X chromosome Xist Silencer [42]

Chicken b-globin locus 5’HS4 Insulator [92]

ApoB locus 5’ end of gene Insulator [93]

Drosophila HOX locus Stalled RNAPs Insulator [53]

Mouse Igf2-H19 locus CTCF Insulator [50]

Dystrophy locus CTCF Insulator [94]

IL-3 CTCF Insulator [57]

GMCSF locus CTCF Insulator [57]

Renin CTCF Insulator [58]

ETNK2 locus CTCF Insulator [58]

CFTR locus CTCF Insulator [95]

c-Myc CTCF Insulator [55]

Chicken a-globin locus CTCF Insulator [96]
aagRNA, antigene RNA; CFTR, cystic fibrosis transmembrane conductance
regulator; CTCF, CCCTC-binding factor; eRNA, enhancer RNA; IgH,
immunoglobulin H; LDL, low-density lipoprotein; RNAP, RNA polymerase.
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order for them to be functional, they need to be tran-
scribed (and so associated with a transcription factory).
This hypothesis defines two key aspects of chromatin
structure: proximity between distant DNA sequences
due to looping and tethering of active genes to a factory.
Does the number of factories in a given cell suffice to

accommodate all transcription units, including enhan-
cers and/or silencers? To date, the lowest estimate of
about 200 factories concerns murine primary cells and
comes from RNAPII immunostaining ex vivo [81]. This
suggests that about 80 transcription units would share a
factory (assuming 16,000 active transcription units, as in
HeLa cells) [86] or that a number of them are tran-
scribed outside a factory. Other approaches in HeLa
cells return a number that is an order of magnitude
higher: approximately 2,000 factories, each hosting an
average of 8 transcription units [97,98]. Moreover, the
density and diameter of these transcriptional hot spots
appear to be constant between cell types, suggesting an
underlying topology accessible to transcription units in
different nuclear neighbourhoods [86,99]. The difference
between these numbers may be explained by a differ-
ence in sensitivity of detection [86,98]. But does most
transcription occur in factories? It seems it may, as
some estimates indicate that more than 95% of nascent
nucleoplasmic RNA is found in factories (assessed using
incorporation of various precursors in a variety of cell
types) [13,97-99]. Nonetheless, these issues will probably

be resolved only by imaging factories in different types
of living cells.
Now consider that an enhancer (transcription unit 1)

(Figure 2A) tethers its target promoter (in unit 2) close
to factory or hub A that contains the necessary machin-
ery. As a result, the target promoter 2 will diffuse
through the nucleoplasm and frequently collide with a
polymerase in factory A to initiate transcription.
Although promoter 3 is also tethered close to the same
factory, it will initiate rarely (because factory A lacks the
necessary transcription factors required by this particu-
lar promoter). Although promoter 3 can initiate in fac-
tory B (which contains high concentrations of the
relevant factors), it will do so rarely, simply because it is
tethered close to factory A and far from B. Next, tran-
scription unit 1 acts as an enhancer of unit 2 and as a
silencer of unit 3. The addition of histone modifications
that mark the various units as active or inactive will
now reinforce the status quo. After that, once unit 1 has
been transcribed, these marks will make it more likely
that unit 1 or unit 2 will reinitiate in factory A to create
a virtuous cycle. Similarly, at another developmental
stage, when a different set of transcription factors are
expressed (Figure 2B), unit 1 might be transcribed in
factory C. It is again flanked by units 2 and 3, but these
can now be transcribed efficiently only in factory B
(which is rich in the necessary factors). As units 2 and 3
cannot stably interact with each other by binding to

Figure 2 A simple model for the function of regulatory elements. Spheres A, B and C represent factories rich in different sets of
transcription factors and associated halos indicate the probability that promoter 1, 2 or 3 will collide with a factory (red indicates high
probability). The low-probability zone immediately around the factory arises because the intrinsic stiffness of the chromatin fibre restricts the
formation of very small loops). Curved black arrow indicates collision between promoter and factory that yields a productive initiation. Dashed
grey arrows indicate the preferred site of initiation (as factory B is rich in the relevant transcription factors). Blocked red arrows indicate
unproductive collisions (as the factory contains few of the relevant factors). (A) Enhancers and silencers. Transcription unit 1 is being transcribed
by a polymerase in factory A. This tethers unit 2 in a ‘hot zone’, where it has a high probability of colliding with a polymerase in factory A
(which contains high local concentrations of factors necessary for initiation by promoters 1 and 2). As a result, unit 1 acts as an enhancer for unit
2. At the same time, unit 3 is tethered far from factory B (which is rich in the factors required for its initiation). Here unit 1 acts as a silencer of
unit 3. (B) Insulator. At a different stage in development, a different constellation of transcription factors are expressed. Chromatin domains
containing units 2 and 3 are separated by unit 1 (now transcribed in factory C, which contains low concentrations of the factors required by
units 2 and 3), so they rarely bind to factory A and interact. Here unit 1 acts as an insulator or barrier.
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factory C, unit 1 now acts as an insulator or barrier. As
before, histone marks will reinforce this different (virtu-
ous) cycle.

Conclusions
The model we propose here (Figure 2) illustrates a case
where nongenic transcription unit 1, in its normal geno-
mic location, acts as an enhancer, silencer or insulator
or barrier, depending on the target and developmental
stage. We imagine that most regulatory motifs normally
act in only one way; however, when moved out of their
normal context (usually the case in the assays used to
test for the action of these motifs), they will act differ-
ently, depending on the new context (which includes
proximity to an appropriate factory). This model encap-
sulates notions of transcriptional activity, epigenetic
marks and three-dimensional architecture, which, in
combination, provide the context that determines pro-
moter activity.

Abbreviations
bp: base pair; kb: kilobase; IL: interleukin; Mbp: megabase pair; miRNA:
microRNA; RNAi: RNA interference; TNF: tumour necrosis factor.
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