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Abstract

Background: Heterochromatin is the tightly packaged dynamic region of the eukaryotic
chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination.
Recent experiments in Schizosaccharomyces pombe have revealed the structure of centromeric
heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that
the heterochromatin barrier is traversed by RNA Pol Il and that the passage of RNA Pol Il through
heterochromatin is important for heterochromatin structure. Thus, an intricate interaction
between the RNAi machinery and RNA Pol Il affects heterochromatin structure. However, the
role of the RNAi machinery and RNA Pol |l on the metazoan heterochromatin landscape is not
known. This study analyses the interaction of the small RNA machinery and RNA Pol Il on
Drosophila heterochromatin structure.

Results: The results in this paper show genetic and biochemical interaction between RNA Pol |
(largest and second largest subunit) and small RNA silencing machinery components (dcr-2, agol,
ago2, piwi, Lip [D], aub and hls). Immunofluorescence analysis of polytene chromosomes from trans-
heterozygotes of RNA Pol Il and different mutations of the small RNA pathways show decreased
H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on
these mutants showed a strong suppression of white-mottled4h position effect variegation. This was
further corroborated by a western blot analysis and chromatin immunoprecipitation, which
showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single
heterozygotes. Co-immunoprecipitation performed using Drosophila embryo extracts showed the
RNA Pol Il largest subunit interacting with Dcr-2 and dAGOI. Co-localization performed on
polytene chromosomes showed RNA Pol || and dAGO| overlapping at some sites.

Conclusion: Our experiments show a genetic and biochemical interaction between RNA Pol Il
(largest and second largest subunits) and the small RNA silencing machinery in Drosophila. The
interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the
chromocentric heterochromatin. Thus, RNA Pol |l has an important role in establishing
heterochromatin structure in Drosophila.
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Background

The metazoan chromosome consists of two distinct func-
tional compartments based mainly on their transcrip-
tional competence and higher order chromatin
packaging. Heterochromatin is tightly packed and has a
paucity of actively transcribed genes. It plays a vital role in
biological functions such as determining the distribution
of meiotic recombination, telomere maintenance and sis-
ter chromatid cohesion [1-3]. The metazoan chromosome
is also interspersed with facultative heterochromatin,
which has the potential to become transcriptionally com-
petent. This fine tuning ensures gene regulation in a cell
specific and spatio-temporal manner during develop-
ment.

The long held notion that heterochromatin is refractory to
transcription was reversed in recent experiments per-
formed in Schizosaccharomyces pombe and mouse cells
[4,5]. It was demonstrated that centromeric heterochro-
matic repeats are transcribed in the late S phase of the cell
cycle and this transcription of heterochromatic repeats is
essential for the structural maintenance of centromeric
heterochromatin. It was also shown that heterochromatin
is a versatile platform with proteins such as SWI6, which
prevents access of RNA Polymerase Il to centromeric
repeats, in dynamic equilibrium with Epel, which pro-
motes transcription [6]. During transcription through the
heterochromatic arrays, H3S10phos increases and SWI6
deposition is decreased, thus decondensing the hetero-
chromatin structure. During the late S phase, transcription
of heterochromatic repeats by RNA Pol II occurs and an
increase in the deposition of Ago1, Clr4 and Rik1 is also
observed [4]. The accumulation of Clr4 histone methyl
transferase, together with the RNAi induced transcrip-
tional silencing (RITS) complex components, results in
the processing of cen siRNAs, which would then direct the
methylation of H3K9 at heterochromatic repeats. It was
also shown in S. pombe that transcription of the centro-
meric repeats produces nascent transcripts, which are used
as a template by the RNA-dependent RNA polymerase
complex (RDRC) to produce dsRNA. The latter is then
cleaved by Dicer to synthesize centromeric siRNA which
are then loaded onto RITS, bringing about the deposition
of H3K9me2 (Clr4 mediated) and SWI6 at the centro-
meric heterochromatin [7-10]. It was also shown that in
fission yeast mutations in the second largest and fourth
largest subunit of RNA polymerase II affects the synthesis
of centromeric and pre-centromeric siRNAs, respectively
[11,12] and was accompanied by reduction of H3K9me2
and Swib6 at the centromeres. The mutations in RNA Pol II
subunits did not cause any significant changes in global
transcription but its effect was confined to the centromeric
heterochromatin structure. These studies highlighted the
fact that RNA Pol II performs an integral function for cen-
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tromeric heterochromatin structural maintenance in con-
junction with the small RNA processing machinery.

We explored the role of RNA Polymerase II on heterochro-
matin structure in Drosophila because of the availability of
polymerase mutations and a well-developed model sys-
tem for the study of heterochromatin. We employed
genetic, biochemical and cytological analysis to address
this issue. Our analysis indicates that the largest and sec-
ond largest subunits of RNA polymerase II interact genet-
ically and biophysically with RNA silencing machinery
components. Our data also indicate that RNA Pol II
mutants (largest and second largest subunits) link tran-
scription and RNA silencing components to heterochro-
matin structure in metazoans.

Results and discussion

In order to test the role of RNA Pol II on heterochromatin,
we employed genetic tests using the inversion of white-
mottled4h stock. The In(1)w [m4h] stock has a pericentric
inversion between the white gene and the centric hetero-
chromatin. This arrangement results in a variegated eye
pattern. Many genes acting as chromatin modifiers sup-
press or enhance the position-effect variegation (PEV)
effect. We used mutations in the second largest subunit of
RNA Pol IT 140. The mutant alleles used were RNA Pol 11
140 (A5) and RNA Pol 11 140 (wimp). The A5 allele is a null
mutant with a five amino acid deletion while wimp is an
antimorph [13,14]. We observed that RNA Pol II muta-
tions weakly suppressed PEV as a heterozygote. However,
the trans-heterozygote of RNA Pol I 140(A5) and dicer-2
(dcr-2 G173E) showed a stronger suppression of PEV
when compared with either the single heterozygotes or
control normal male flies (Figure 1A and 1B). This exper-
iment revealed genetic interaction between RNA Pol 1II
and Dicer-2, which is a central processing enzyme in the
RNAi pathway.

To further understand the nature of the interactions
between RNA Pol II and the RNA silencing machinery, we
tested the effect of an array of different RNA silencing
machinery mutations on PEV including those implicated
in piRNA formation, which acts independently of Dicer
[15]. In each case, different mutant alleles of each gene
were tested in order to rule out any linked gene effect on
PEV suppression. The PEV analysis indicated genetic inter-
actions between dcr-2(L811fsX), dcr-2(G173E), ago-
2(414), piwi[1], piwi[2], his [616], hls [125], aub [QC42 |,
aub [P3a] and RNA Pol II alleles (Figure 1A and 1B and
Additional file 1). In each case the trans heterozygotes of
RNA Pol IT and RNA silencing pathway mutations exhib-
ited stronger suppression of PEV than single heterozy-
gotes. However, the suppression of PEV was strongest in
the trans-heterozygotes of RNA Pol II and dcr-2 alleles
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Suppression of heterochromatic silencing in trans heterozygotes of RNA Pol Il 140 and RNA silencing machin-
ery mutants. The genotypes of control, single heterozygous and trans-heterozygous male flies are indicated involving the X
chromosome inversion In(l)w [m4h]. The effect on DX tandem mini-white silencing is also shown in the middle. The genotypes
of control, single heterozygous and trans-heterozygous male flies are indicated. The alellic combinations used are noted. Meas-
urement of eye pigment analysis is presented below. Measurements from three independent experiments are shown. Error
bars represents standard error. Optical density values at 480 nm are indicated on the Y-axis and the genotypes represented on
the X-axis. Asterisks indicate significant P values < 0.05.
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among all the other combinations tested as indicated by
the eye pigment measurements.

The suppression of PEV is a reflection of the changes in the
chromatin structure of heterochromatin. The effect of
RNA Pol IT and RNA silencing machinery trans-heterozy-
gote mutants was not confined to the heterochromatin
environment of the chromocentre. This was shown in an
experiment employing transgenic flies that have seven
tandem copies of mini-white, referred to as DX1 (Figure
1C), that are located in the euchromatin of chromosome
2. Flies that are homozygous for this transgene arrange-
ment have a heterochromatin environment around the
mini-white arrays, thus silencing the expression of mini-
white transgenes in mosaic fashion [16]. We tested two
combinations, namely RNA Pol II 140(A5) and piwi[1], as
well as RNA Pol II 140 (A5) and his [125] on DX1
homozygous flies. In each case the trans-heterozygotes
reversed the silencing of mini-white to a much greater
extent when compared to either single heterozygotes or
control flies with no mutations. The exact molecular
mechanism of DX1 silencing has not been elucidated but
is believed that pairing sensitive silencing might be one of
the contributing factors. The experiments performed with
RNA Pol IT mutants suggest that there is also involvement
of a transcriptional silencing component.

The strong suppression of PEV in trans-heterozygotes of
RNA Pol IT and RNA silencing machinery components led
us to investigate the heterochromatin structure at the
chromocentre of polytene chromosomes. In Drosophila,
H3K9me2 modification is concentrated at the centric het-
erochromatin. H3K9me?2 is also interspersed along the
euchromatin arms where it is accumulated on transposa-
ble elements [17]. We reasoned that, because the suppres-
sion of the white gene is relieved in the PEV analysis,
H3K9me2 at the chromocentre would be reduced. We
performed experiments using third instar larval polytene
chromosomes probed with antibodies against H3K9me?2.
We combined the trans-heterozygotes and the control
wild type chromosomes in the same preparation so that
they could be observed in one microscopic field for direct
comparisons under identical experimental conditions. As
our PEV analysis indicated that the trans-heterozygote of
RNA Pol 1I 140 (A5) and dcr-2 (G173E) suppressed PEV
very strongly, we analysed this combination for reduction
in H3K9me2 at the chromocentre of polytene chromo-
somes. Indeed, compared to the wild type nuclei, RNA Pol
IT 140 (A5)/+; dcr-2 (G173E)/+ showed a reduction of
H3K9me2 as visualized by the immuno-fluorescence
experiments (Figure 2). A similar pattern showing
decreased H3K9me?2 deposition at the chromocentre was
observed using the RNA Pol II 140(wimp)/+; dcr-2
(G173E)/+ combination and RNA Pol Il 140(A5)/+; dcr-2
(L811fsX)/+, which illustrates the generality with regard to
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different alleles at both loci. We then performed immun-
ofluoresence experiments on polytene chromosomes
using RNA Pol IT 140 (A5)/+ as a control. In accordance
with our PEV analysis, RNA Pol II 140 (A5)/+ dcr-2
(G173E)/+ showed decreased H3K9me2 deposition at the
chromocentre compared with the single heterozygote of
RNA Pol 1I (A5)/+. The experiments were repeated five
times with about 75 pairs of mutant and control nuclei
observed. In each case about 75%-80% of the mutant
nuclei showed a reduction of H3K9me?2 at the chromo-
centre compared to the wild type. All the experiments
were performed by switching the sexes of mutant and nor-
mal using antibodies against Sex-lethal, which is only
expressed in females, to distinguish male from female
nuclei. This was done in order to ensure that the reduction
in H3K9me?2 at the chromocentre was not sex specific. We
then analysed polytene chromosomes using wild type
control and trans-heterozygotes of: (1) RNA Pol II 140
(A5)/+; hls [125]/+; (2)RNA Pol IT 140(A5)/+; hls [E61]6/
+; (3)RNA Pol 11140 (A5)/+; piwi[1]/+; and (4)RNA Pol II
140(A5)/+; Lip [D]/+ [18] (Figure 2 and Additional file 2).
Lip is synonymous with Dmp68 [19], which have been
shown to be necessary for RNAI in tissue culture cells [20].
In each case the trans-heterozygote mutants showed
reduced H3K9me2 deposition at the chromocentre. The
immunofluoresence analysis of polytene chromosomes
using trans-heterozygotes complements the PEV pheno-
typic analysis. These experiments indicate that RNA Pol 11
exhibits genetic interaction with the RNA silencing
machinery components and that the suppression of PEV
is correlated with a reduction in H3K9me?2 at the chromo-
centre.

In order to quantify the reduction of H3K9me2, western
blot analysis was performed on acid extracted histones
using H3K9me2 antibodies. Adult carcasses, with the
gonads removed, were used to rule out any effect of the
RNA silencing machinery in the germline [21]. The analy-
sis revealed that single heterozygotes of RNA Pol II
140(A5)/+ and RNA silencing machinery mutants alone
showed very modest to no change in H3K9me2 levels
compared to the wild type. However, trans-heterozygotes
for the combined mutants showed a strong reduction in
H3K9me?2 levels compared with wild type and single het-
erozygotes (Figure 3). The western blot analysis also cor-
roborated the PEV analysis.

We next performed chromatin immunoprecipitation
(ChIP) using H3K9me2 antibodies on adult flies. The
combination of RNA Pol II and dcr-2 was selected because
it gave the strongest suppression of PEV in the w [m4h]
background. The ChIP analysis revealed significant
enrichment of H3K9me?2 at the white locus in the vicinity
of centromeric heterochromatin (w [m4h] genetic back-
ground). The tubulin locus (in euchromatin) did not
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Figure 2

Immunofluorescence analysis of polytene chromosomes in RNA Pol Il 140 and small RNA pathway mutants.
Representative images from five different experiments (approx 50 pairs of nuclei) have been examined. The genotypes of each
polytene nuclei have been indicated. The FITC (green) channel shows H3K9me2 antibody signal while the Texas Red shows SxI
antibody signal. H3K9me2 staining at the chromocentre is displayed.

show any enrichment of H3K9me2 nor any significant ity of centromeric heterochromatin due to the inversion)
difference in the amount of H3K9me2 between the con-  locus, the double heterozygotes of RNA Pol IT 140 (A5)/+;
trol (In(1)w [m4h];+/+), single heterozygous mutants and  dcr-2 (L811fsX) showed significant reduction (about four-
the double heterozygotes of RNA Pol II 140 and dcr-  fold) of H3K9me2 compared to the control as well as to
2(L811fsX). However, at the white (which lies in the vicin-  single heterozygote mutants (Figure 4). Also, there was no
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Western blot analysis of H3K9me2 levels in RNA Pol Il 140 and small RNA pathway mutants. Adult carcasses
were used for acid extraction of histones. Results from three independent biological replicates are shown. Western blot analy-
sis of acid extracted histones from adult carcasses of indicated genotypes is shown. Asterisk shows p value < 0.05. Standard
error from four different experiments is shown.
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replicas.

significant change in H3K9me?2 between the control and
single heterozygotes of RNA Pol II 140 and dcr-2. The ChIP
analysis at the white locus in the In(1)w [m4h] genetic
background indicates the importance of H3K9me2 in
suppressing the white locus. The ChIP results are consist-
ent with the PEV analysis and Western blot results.

In addition to the second largest subunit of RNA Pol II, we
also studied the effect of the RNA Pol II's largest subunit
mutation on H3K9me?2 levels in the adult carcass (Figure
3). As the largest subunit gene (RNA Pol 11215 W81) is
located on the X-chromosome, a PEV analysis of male flies
was not possible and the fact that a translocation balancer
chromosome between the X chromosome and the second

chromosome was not available precluded any immun-
ofluoresence analysis on larval polytene nuclei. The
mutant allele used was W81, which has a truncated car-
boxyl terminal domain (CTD) due to the presence of a
premature stop codon.

Trans-heterozygotes of RNA Pol [1215(W81)/+; dcr-
2(L811fsX) showed a significant reduction of H3K9me2
in Western blot analysis compared to the wild type as well
as RNA Pol I1215(W81)/+ alone. The reduction of
H3K9me2 with two different subunits of RNA Pol II, in
combination with dicer-2 mutations, provides further evi-
dence of a role of RNA pol II in heterochromatin forma-
tion in conjunction with RNA silencing genes.
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The chromocentre of Drosophila is characterized by strong
deposition of heterochromatin protein-1 (HP1). With a
reduction of H3K9me2, HP1 is deposited at various low
affinity-binding sites along the chromosome arms [22].
The presence of H3K9me?2 provides high affinity binding
sites for the docking of HP1. We examined the polytene
chromosomes of RNA Pol IT 140 (A5)/+ dcr-2(G173E)
trans-heterozygotes for any changes in HP1 deposition
pattern (Figure 5). The gently squashed polytene nuclei
from third instar larvae showed mislocalization of HP1 to
the euchromatin arms compared to wild type nuclei,
which showed a much more discrete HP1 deposition at
the chromocentre.

With regard to piRNA genes, previous experiments
involved examining HP1 mislocalization in piwi[1]/
piwi[2] heteroallelic mutants. This combination did not
show a major mislocalization of HP1 [23]. To test the
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impact of RNA pol II, we introduced the RNA Pol
I1140(A5)/+ mutation in this background. This combina-
tion caused an obvious mislocalization of HP1 (Figure 5).

To establish whether the cytological observations repre-
sented a mislocalization or a quantitative difference, we
used a Western blot analysis which indicated that HP1
protein levels were the same in the wild type and RNA Pol
II 140(A5)/+; dcr-2 (G173E)/+, thus confirming that HP1
is mislocalized and not upregulated in the trans-heterozy-
gote mutants (Additional file 3). The mislocalization can
be attributed to a reduced H2K9me2 deposition at the
chromocentres of mutants, which allow HP1 to associate
with various low affinity binding sites. The above experi-
ments also highlight the role of small RNAs generated by
the transcription of heterochromatic repeats in guiding
heterochromatin modifications (H3K9me2 and HP1) at
the chromocentre.

Sxl- Tx red MERGE

Mutant
females

Control
female

Mutant females

Heterochromatin protein-1 (HP 1) mislocalization in RNA Pol Il and small RNA pathway mutants. HPI mislocal-
ization is visualized in gently squashed polytene nuclei of the noted genotypes. HPI (FITC) is shown in green and SxI (Tx red) is

shown in red.
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In order to gain a further insight into the mechanism by
which RNA Pol II and RNA silencing machinery regulate
heterochromatin structure, we performed co-immunopre-
cipitation using extracts from Drosophila wild type
embryos (6-18 h old). The specificity of Dicer-2 antibody
was confirmed by western blot analysis (Additional file
4). We found co-IP between Dicer-2 and RNA Pol II ser-2
phos CTD, which is a transcriptionally competent form
(Figure 6). This result suggests that the genetic interactions
described above have a basis in a biophysical interaction.

In plants, experiments have implied a role of WG/GW
motifs as docking sites for Argonaute binding such as for
AGO4 to the CTD of the largest subunit of Pol IVb subunit
NRPD1B [24], which is a specialized RNA pol II involved
with transcriptional silencing. The CTD of the Drosophila
lacks any reiterative GW/WG motifs and it might be spec-
ulated that the absence of these domains could contribute
to the lack of any physical interaction between dAGO2
and RNA Pol II. We could not detect any interaction
between dAGO2 and RNA Pol II CTD, implying that the
interaction is very weak or indirect. The analysis of the
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Figure 6

Biochemical interaction between the RNA Pol Il car-
boxyl terminal domain and RNA silencing machinery
components. (A) Whole cell extracts from 6-18 h wild type
embryos were prepared. Native mouse serum was used in
the control lane and 8WG16 monoclonal RNA Pol Il anti-
body was used for pull down analysis. About 500 micrograms
of lysate was used. AGO| and Dicer-2 polyclonal antibodies
(1: 1000) were used to perform western blot analysis. (B)
Co-immunoprecipitation analysis performed similarly as
above with H5 antibodies specific for RNA Pol Il ser-2 phos.

http://www.epigeneticsandchromatin.com/content/2/1/15

amino acid sequence of RNA Pol II 140 revealed the pres-
ence of a PxVXV site (residues 350-354) (Additional file
5). Similarly, AGO2 also contains the pentapeptide PxVxV
(residues 486-490)(Additional file 5). The peptide
sequence PxVxM/L/V represents the conserved sequence
found in all HP1 interacting proteins [25]. Recent experi-
ments performed in flies demonstrate that PIWI interacts
physically with the HP1 protein by virtue of the presence
of the PxVxV domain [26]. The amino acid replacement of
the central valine residue of the pentapeptide abolished
interaction between HP1 and PIWI, thus highlighting the
importance of the pentapeptide domain for this interac-
tion. As RNA Pol II 140 possesses a PxVxV domain, it is
interesting to speculate that HP1 might bridge PIWI and
AGO2 with the RNA Pol II 140 subunit. This might con-
stitute a novel RNA Pol II complex in metazoans exclu-
sively dedicated for silencing. We could not address this
issue because of the unavailability of suitable RNA Pol II
140 antibodies for immunoprecipitation.

However, we found dAGO1, which typically binds miR-
NAs, co-immunoprecipitated with RNA Pol II (8WG16)
CTD antibody (Figure 6), but not with antibodies against
the activated CTD. The presence of dAGO1 in the pull-
down fraction using 8WG16 antibodies prompted us to
investigate the role of the miRNA machinery in hetero-
chromatin modifications. dcr-1 and ago-1 are two genes
that play a predominant role in miRNA metabolism in
flies [27,28]. There was no effect on H3K9me2 modifica-
tion at the chromocentre of polytene chromosomes of
RNA Pol 1I(A5)/+; der-1(Q1147X) compared to wild type
(Additional file 6). Similarly this trans-heterozygote com-
bination did not relieve the silencing of the mini-white
array DX1 or the In(1)w [m4h] heterochromatin environ-
ment. When trans-heterozygotes of RNA Pol 11140 (A5)/+;
agol(k04845)/+ were introduced into the In(1)w [m4h]
background, there was moderate suppression of PEV
(Additional file 7). Similarly, the chromocentre of poly-
tene chromosomes in this background caused moderate
reduction of H3K9me2 compared to wild type and there
was a significant reduction in H3K9me2 levels in the
Western blot analysis. The presence of AGO1 in the RNA
Pol II (8WG16) pulldown fraction indicates that AGO1
might have an affinity for binding to small RNAs arising
from heterochromatin. This may well be the case as there
is evidence that AGO1 and AGO2 have somewhat over-
lapping functions and there is sharing of biochemical
components among miRNA, endo-siRNA and siRNA
pathways in Drosophila [29,30].

In order to address the in vivo association between RNA
Pol II and small RNA silencing machinery proteins, we
examined possible co-localization patterns between them
on polytene chromosomes. The immunofluorescence
analysis on polytene chromosomes revealed a few sites of
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co-localization between RNA Pol II (8WG16 antibody)
and dAGO1 (Figure 7 and Additional files 8 and 9). The
overlapping positions between AGO1 and 8WG16 (RNA
Pol II) might potentially represent sites where the small
RNA machinery is involved with RNA Pol II in maintain-
ing local chromatin structure and hence gene expression.
The in vivo association between RNA Pol II and AGO1 at
few sites on polytene chromosomes provides further evi-
dence of a physical association between RNA Pol II and
the small RNA silencing machinery. The association of
RNA Pol II with PIWI, AGO-2 and Dicer-2 could not be
addressed because of the non-availability of antibodies
suitable for polytene chromosome staining.

The TAF-1/TFIID (TATA box binding protein associated
factor 1) is the major component of the transcription ini-
tiation complex in eukaryotes. Trans-heterozygotes of
RNA Pol 11140(A5)/+; TAF-1/+ and the single heterozy-
gote TAF-1/+ shows no effect on suppression of PEV
(Additional file 10). This control shows that mutations
affecting transcription factors (TAF-1 interacts with RNA
Pol II as part of general transcription machinery) had no
effect on suppression of PEV and implicates the specific
interaction of pol II with the small RNA silencing compo-
nents.

In order to test whether the double heterozygous combi-
nations affect post-transcriptional functions of the RNA
silencing machinery, selected genotypes were examined
for an effect on white RNAi. The trans-heterozygotes of (1)
RNA Pol II(A5)/+; piwi[1]/+; (2) RNA Pol II (A5)/+; his
[125]/+; and (3) RNA Pol IT (A5)/+; dcr-2(L811fsX)/+ had
no effect on w-IR RNAi (Additional file 11). This experi-
ment indicates that in RNA Pol I 140(A5)/+ heterozygotes
in which the dose of RNA Pol II is halved, the effect is
more pronounced on the heterochromatin structure
(transcriptional gene silencing (TGS), but the w-IR RNAi
pathway is unaffected under these circumstances. To
obtain further insight into the role of RNA Pol II in silenc-
ing, we tested for an effect on TGS silencing involving the
interaction between Alcohol dehydrogenase-white hybrid
transgenes [31]. In these flies the transgene copies of w-
Adh bring about silencing of Adh-w at the transcriptional
level; however, the silencing is eliminated in a piwi mutant
background [31,32]. When RNA Pol II 140(A5)/+ was
introduced into this genotype, there was no apparent
effect on silencing (Additional file 12). The trans-hetero-
zygotes of RNA Pol I1I 140(A5)/+; hls [125]/+ also had no
effect on relieving the silencing of Adh-w by w-Adh trans-
genes.

Conclusion

The role of small RNAs in maintaining genomic stability
and chromosome structure is receiving increasing atten-
tion. It has now been well articulated that in Drosophila, S.

http://www.epigeneticsandchromatin.com/content/2/1/15

pombe and mouse defects in the RNAi machinery lead to a
compromised heterochromatin structure and aberrant
regulation of transposable elements. Recent studies in S.
pombe, Arabidopsis and mouse have further elucidated the
mechanism by which small RNAs arising from hetero-
chromatic repeat transcription modify histone methyla-
tion in the heterochromatin. Plants have an exclusive RNA
Pol V dedicated for heterochromatin maintenance
[33,34]. The case of centromeric heterochromatin forma-
tion in S. pombe is best studied in regard to the relation-

Magnified ¥ 3
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8WG16 AGO1
FITC Tx red

MERGE

Figure 7

Co-localization of RNA Pol Il and AGOI on polytene
chromosomes. High magnification of the overlap sites
between AGO| (red) and 8WGI 6 (green). Arrows indicate
sites of co-localization and arrow head indicates RNA Pol Il
site not overlapping with 8WWG16. Third instar larvae from
Canton S flies were used.
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ship between the RNAi machinery and RNA Pol II
transcription.

We observed genetic and biochemical interaction between
the second largest subunit of RNA Pol IT and RNA silenc-
ing genes. The genetic interaction had a chromatin com-
ponent in terms of suppressing PEV and reduction of
H3K9me?2 levels. The interaction between RNA Pol II and
Dicer-2 was the strongest in terms of suppressing PEV of w
[m4h]. In contrast, dcr-1, which has a key role in miRNA
metabolism, had no role in determination of heterochro-
matin structure in our studies. The interaction of RNA Pol
IT with other proteins in the RNA silencing pathway dis-
played a similar level of effect on heterochromatin struc-
ture.

An interesting aspect of this study is the involvement of
piwi and aub in suppressing PEV and H3K9me2 reduction
in combination with RNA Pol II. PIWI and Aub associate
with a unique class of rasiRNAs called piRNAs that are
found predominantly in the germline cells and are inde-
pendent of the Dicer processing machinery [15,35]. How-
ever, piwi mutations also have effects in somatic cells and
the PIWI protein has been demonstrated to be present in
the soma and piRNAs have been detected in somatic tis-
sues [26,36]. Also, the fact that Dicer-2 co-immunoprecip-
itates with RNA Pol II and their genetic interaction
strongly suppress PEV might indicate a possible role for
endo-siRNAs in regulating heterochromatin structure.

Recent experiments in plants reveal the presence of a RNA
Pol V complex which shares some subunits of RNA Pol 11
and participates in RNA silencing [37]. Because animals
lack RNA Pol IV and Pol V, it is possible that they possess
a specialized RNA Pol II complex involved in RNA medi-
ated silencing. The interaction of Dicer-2 with the tran-
scriptionally competent form of RNA Pol II might reflect
one such form. It might also represent an additional
mechanism of gene regulation by degrading aberrant tran-
scripts during the elongation process. The involvement of
dAGO1 with RNA Pol II in co-immunoprecipitation
experiments suggests an additional level of complexity
regarding the involvement of 'Argonaute slicer' in the
cleavage of small RNAs. While this result might implicate
miRNAs being involved in heterochromatin formation,
the following observations suggest otherwise: (1) trans-
heterozygotes of RNA Pol II and dcr-1 have no effect on w
[m4h] PEV suppression and H3K9me2 levels; and (2)
miRNAs have a central bulge making it difficult to explain
how specificity is achieved when miRNAs base pairs
imperfectly with nascent centromeric transcripts/centro-
meric DNA. The involvement of AGO1 probably suggests
that small RNAs arising out of cleavage of nascent hetero-
chromatic transcripts have some affinity for AGO1.

http://www.epigeneticsandchromatin.com/content/2/1/15

Our experiments suggest that RNA Pol II transcription
through centromeric heterochromatin results in a nascent
transcript that could fold into a stem loop structure by vir-
tue of the presence of many direct and inverted repeats
present in the heterochromatin. This acts as a substrate for
Dicer-2 generating endo-siRNAs, which guide chromatin
modifications at the heterochromatin. The interaction of
Dicer with RDRC has been shown to be crucial for centro-
meric heterochromatin structure in S. pombe. The interac-
tion between RNA Pol II and Dicer-2 in Drosophila reflects
a similar mechanism. The exact role of the RNA Pol II sec-
ond largest subunit mutations on small RNA synthesis
from the centromere is not known but it is possible that it
disrupts the biochemical interaction between the CTD of
the largest subunit and Dicer-2. The heterochromatin spe-
cific histone modifications are dependent on both the
RNA pol II complex as well as small RNA silencing
machinery components.

Methods

Fly stocks and PEV analysis

All flies were grown at 25°C on standard food medium.
The genotypes were:

y w; RNA Pol IT 140(A5)/TM3, Sb

RNA Poll 215(W81)/FM7a

ru[1] h[1] th[1] st[1]cu[1]RpII140 [wimp] sr[1] e [s] ca[1]/
TM3, Sb[1]

y w; ago2(414)

y w; eyFLP; FRT 42 D dcr-2(G173E)/CyO
y w; eyFLP FRT 42 D dcr-2(L811fsX)/CyO
y w; eyFLP FRT 82B dcr-1(Q1147X)/TM3, Ser
cnl P(ryt 7.2) ago-1(04845)/CyO

ru st his [E616] e ca/TM3, Sb e

1y cv ¢ sbd his [DES]/TM2, Ubx 1y e

wl; his [125] e/TM3, Sb e

aub [QC42]/CyO

w; aub Df(P3a)/CyO

y w; piwi[1]/CyO

y w; piwi[2]/CyO
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y w; DX1/CyO

The male flies of each of the genotypes mentioned above
were crossed to female In(1)w [m4h]; SM6a/Gla; TM3, Sb/
Ser. The single heterozygotes of RNA Pol II 140 in the w
[m4h] background were then mated with RNA silencing
mutants in a similar background. The F2 males were then
sorted into different single and double heterozygous
groups and analysed for PEV.

In order to analyse the effect of piwi[1] on DXI1 silencing,
the DX1(lac w) transgene array was recombined with Sco
and balanced over CyO to produce DX1 Sco/CyO flies. The
males of DX1 Sco/CyO were then crossed to female
piwi[1]/CyO. In the next generation, female non-curly
DX1 Sco/piwi[1] females were selected, which then were
crossed to male w; Gla/SM6a; TM3, Ser/Sb. In the next gen-
eration non-Sco flies DX1 piwi[1]/CyO were obtained.

Measurement of eye pigment

Fly heads from 10 animals were homogenized in metha-
nol containing 0.1% hydrochloric acid (HCI). The absorb-
ance of the supernatant was measured at 480 nm after the
centrifugation of the fly head homogenate. Three inde-
pendent experiments were performed in each case.

Immunofluoresence analysis of polytene chromosomes

To analyse trans-heterozygotes of RNA Pol I 140 and dcr-
2, piwi and his, we crossed them into a T(2,3)CyO Tb back-
ground. In the next step, males of RNA Pol II 140 and
females of piwi[1], der-2(G173E), his [125] (each balanced
over T(2;3) CyO Tb) were crossed and non-Tb third instar
larvae were selected for further analysis. Three to four
pairs of salivary glands each from control and trans-heter-
ozygotes were dissected in 0.7% NaCl. The glands were
then fixed for about a minute in 3.7% formaldehyde in
phosphate buffered saline (PBS; ice-cold). The glands
were then kept in a solution of 45% acetic acid and 3.7%
formaldehyde for about 2 min and then squashed. The
slide was placed on dry-ice for 20 min, the cover slip
removed and then washed twice in PBS for 10 min each
and blocked for 30 min in a solution of PBS containing
bovine serum albumin (BSA). The following antibodies
were used at 1:100 dilutions: Sxl (Hybridoma bank, Uni-
versity of Iowa, USA), HP1 (from Dr S Elgin) and
H3K9me2 (Upstate). The primary antibodies were incu-
bated overnight at 4°C. On the following day, the slides
were washed twice in PBS and blocked in PBS-BSA solu-
tion. The slides were then blocked with 5% goat serum for
30 min at 37°C. The secondary antibodies (1:100 goat
anti rabbit-conjugated with fluorescein isothiocyanate
and 1:200 goat anti-mouse conjugated with Texas red)
were then applied to the slide for about 1 h at 37°C. The
slides were washed twice in PBS and visualized using flu-
orescence microscopy after application of 4', 6-diamid-
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ino-2-phenylindole. The images were adjusted using
Photoshop CS3 version software.

The gently squashed polytene spreads [38] were prepared
in the same manner except that solution II (45% acetic
acid in PBS) was omitted. The glands were squashed in
0.7% NaCl and the fixed in 3.7% formaldehyde for 20
min at 4°C.

Western blot analysis

Adult flies (aged 12-15) were dissected to remove the ova-
ries. The carcasses were then homogenized in HEPES
buffer containing protease inhibitor cocktail (Pierce). The
homogenate was then acidified with HCI to a final con-
centration of 0.2 N HCI and kept on ice for 1 h. The
homogenate was then centrifuged at 11,000 g for 15 min
and the supernatant was then neutralized with NaOH.
The histone enriched protein lysate was then boiled with
Laemmli sodium dodecyl sulphate sample buffer and
loaded onto the gel. The Western blot analysis was per-
formed by standard procedures [23]. The antibodies used
were rabbit polyclonal H3K9me2 (1:1000) and H4 load-
ing control (1:1000). Supersignal pico chemiluminescent
substrate kit (Pierce) was used to observe the bands and
Image gauge (NIH) software was used to measure the den-
sity of bands.

Co-immunoprecipitation

Wild type embryos at 6-18 h were homogenized in total
lysis buffer containing 1 M Tris pH 8, 150 mM NacCl, 10
mM EDTA, 10% glycerol and protease inhibitor cocktail
(Pierce). The homogenate was then kept for 15 min on
ice. After centrifugation the lysate (about 500 pg) was
applied to the activated amino link resin beads. The beads
had RNA Pol II monoclonal antibodies 8WG16 (50 pg
from Covance) covalently linked to the beads. The lysate
was incubated with the beads with gentle mixing at 4°C
overnight. The interacting proteins were eluted and ana-
lysed by western blots. Native mouse serum was used as a
negative control. The antibodies used were Dicer-2 and
Ago-1 rabbit polyclonal antibodies.

Immuno-co-localization using blocking peptide on
polytene chromosomes

Salivary glands from wild type larvae were squashed and
fixed in formaldehyde and acetic acid solutions as
described above. AGO1 antibody (Abcam) was diluted
1:4 in PBT (PBS+Triton X-100). In order to test for the spe-
cificity of the antibody the specific peptide bound by the
AGO1 antibodies was used at 1:50 dilution, mixed with
AGO1 and incubated at room temp for 30 min with occa-
sional gentle shaking. Sxl antibody (Hybridoma bank,
Iowa, USA) was used as an internal control. The nuclei
were observed by standard methods as described above.
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Chromatin Immunoprecipitation

The ChIP method was adapted from a previously pub-
lished protocol [39]. For each ChIP, a reference sample
(Mock) corresponded to a ChIP performed at the same
time without the addition of the specific antibody. For-
maldehyde, at a final concentration of 1.8% in buffer A1,
that is, 60 mM KCI, 15 mM NaCl, 4 mM MgCl2, 15 mM
HEPES (pH 7.6), 0.5% Triton X-100, 0.5 mM DTT, 10 mM
sodium butyrate, protease inhibitor cocktail (Roche,
Basel, Switzerland), was used for crosslinking while crush-
ing whole Drosophila animals (adults) for 10 min at room
temperature. After blocking the reaction with glycine, and
after three washes (5 min each at 4°C with buffer Al),
subsequent steps were performed as described in [39]. For
immunoprecipitation (IP) reactions, 5 pl H3K9me2 (Mil-
lipore) was used per reaction.

Real time polymerase chain reaction analysis

Two microlitres] of DNA sample was used for the analysis.
All samples were analysed in triplicate. The threshold val-
ues (Ct) were used to calculate the fold change differences
by the delta delta Ct method. The IP and mock samples
were normalized to the input. The ABI 7300 (Applied Bio-
systems Inc) was used for the analysis. The SYBR green
master mix was purchased from Applied Biosystems Inc.
The primer sequences used were:

tubulin-
forward-5'AGCAAATTACTTGCAGAATTGG3'
reverse-5'GATTAGTGCGATTAGGACTTG3'
white-
forward-5'CAATCACCACCCCAATCACTC3'
reverse-5'TCCGCTATCTCITTCGCCAC3'

Abbreviations

BSA: bovine serum albumin; ChIP: chromatin immuno-
precipitation; CTD: carboxyl terminal domain; HCI:
hydrochloric acid; HP1: heterochromatin protein-1; IP:
immunoprecipitation; PBS: phosphate buffered saline;
PEV: position-effect variegation; RDRC: RNA-dependent
RNA polymerase complex; RITS: RNAi-induced transcrip-
tional silencing; TGS: transcriptional gene silencing.
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Additional material

Additional file 1

Position-effect variegation (PEV) analysis of male flies of small RNA
and RNA Pol II mutations. The trans heterozygote of RNA Pol Il and
small RNA pathway mutations showed very strong suppression of In(1)w
[m4h] PEV compared with control and single heterozygote mutants. All
the male flies were of same age (4 days after eclosion).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S1.PDF]

Additional file 2

Immunofluorescence analysis of polytene chromosomes in RNA Pol IT
and small RNA pathway trans-heterozygote mutants. H3K9me2 mod-
ification is strongly reduced in trans-heterozygotes compared with the con-
trol. The FITC (green) channel shows H3K9me2 antibody signal while
the Texas red shows Sxl antibody signal. Representative images from five
different experiments (approx 50 pairs of nuclei) have been examined.
The genotypes of each polytene nucleus has been indicated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S2.PDF]

Additional file 3

Western blot analysis of heterochromatin protein-1 (HP1) in small
RNA and RNA Pol I trans-heterozygote mutants. Western blot analysis
with HP1 and tubulin (loading control) antibodies on adult carcasses of
the indicated genotypes. No significant upregulation of HP-1 was
observed in mutants compared with wild type. The standard error bars
were calculated from three different experiments.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S3.PDF]

Additional file 4

Western blot analysis to check the specificity of the dcr-2 antibody. The
western blot analysis performed on third instar larvae shows the absence
of the specific band at ~200 kDa in dcr-2 (L811fsX).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S4.PDF]

Additional file 5

Amino acid sequence of RNA Pol II second largest subunit and dAgo-
2. The consensus heterochromatin protein-1 binding pentapeptide
sequence (PxVxV) is highlighted in bold letters.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S5.PDF]

Additional file 6

Eye pigment analysis of dcr-1(Q1147X) and RNA Pol II 140(A5) in
w [m4h] background. Trans-heterozygotes of dcr-1(Q1147X) and
RNA Pol IT 140(A5) didn't affect position-effect variegation. Three inde-
pendent replicas were performed. Standard error is shown. The genotypes
of male flies are indicated.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S6.PDF]

Page 13 of 15

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1756-8935-2-15-S1.PDF
http://www.biomedcentral.com/content/supplementary/1756-8935-2-15-S2.PDF
http://www.biomedcentral.com/content/supplementary/1756-8935-2-15-S3.PDF
http://www.biomedcentral.com/content/supplementary/1756-8935-2-15-S4.PDF
http://www.biomedcentral.com/content/supplementary/1756-8935-2-15-S5.PDF
http://www.biomedcentral.com/content/supplementary/1756-8935-2-15-S6.PDF

Epigenetics & Chromatin 2009, 2:15

Additional file 7

Role of miRNA machinery in heterochromatin formation. Immunoflu-
orescence analysis of polytene chromosomes using H3K9me2 (FITC) and
Sxl (Tx red) antibodies on the noted genotypes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S7.PDF]

Additional file 8

Co-localization of AGO1 and RNA Pol II (8WG16) on polytene chro-
mosomes. The arrows indicate sites of co-localization between AGO1 and
RNA Pol 11. Canton S wild type third instar larvae were used.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S8.PDF]

Additional file 9

Analysis of AGO1 localization. The upper panels show AGO1 and Sex
lethal proteins on female polytene chromosomes. The lower panel is the
control experiment demonstrating the specificity of the antibody using
AGOT1 specific blocking peptide. Sxl is the internal control and it is unaf-
fected by AGO1 blocking peptide.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S9.PDF]

Additional file 10

Effect of Taf-1 (TATA Box Associated factor 1) on position-effect var-
iegation using In(1)w [m4h] male flies. All male flies were of the same
age (4 days after eclosion).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S10.PDF]

Additional file 11

Effect of RNA Pol II and RNA silencing machinery on white-IR post
transcriptional gene silencing (PTGS). Trans-heterozygotes of RNA Pol
IT 140 and small RNA mutants don't affect w-IR PTGS. The genotypes of
male flies are indicated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S11.PDF]

Additional file 12

Effect of RNA Pol I1 140(A5) and small RNA silencing machinery (hls
[125]) on Adh-white (1 copy) and white-Adh (2 copies) female flies.
All flies were observed 2 h after eclosion.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
8935-2-15-S12.PDF]
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