POSTER PRESENTATION

Open Access

Genome-wide analysis reveals TET-and TDGmediated 5-methylcytosine oxidation dynamics

Li Shen^{1,2,3†}, Hao Wu^{1,2,3,5*†}, Dinh Diep⁶, Ana C D'Alessio^{1,2,3}, Alan Fung⁶, Kun Zhang⁶, Yi Zhang^{1,2,3,4}

From Epigenetics and Chromatin: Interactions and processes Boston, MA, USA. 11-13 March 2013

Ten-eleven translocation (Tet) family of DNA dioxygenases converts 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) through iterative oxidation reactions. While 5mC and 5hmC are relatively abundant, 5fC and 5caC are at very low levels in the mammalian genome. Thymine DNA glycosylase (TDG) and base excision repair (BER) pathways can actively remove 5fC/5caC to regenerate unmethylated cytosine, but it is unclear to what extent and at which part of the genome such active demethylation processes take place. Here, we have performed high-throughput sequencing analysis of 5mC/5hmC/5fC/5caC-enriched DNA using modification-specific antibodies and generated genome-wide distribution maps of these cytosine modifications in wild-type and *Tdg*-deficient mouse embryonic stem cells (ESCs). We observe that the steady state 5fC and 5caC are preferentially detected at repetitive sequences in wild-type mouse ESCs. Depletion of TDG causes marked accumulation of 5fC and 5caC at a large number of distal gene regulatory elements and transcriptionally repressed/poised gene promoters, suggesting that Tet/TDG-dependent dynamic cycling of 5mC oxidation states may be involved in regulating the function of these regions. Thus, comprehensive mapping of 5mC oxidation and BER pathway activity in the mammalian genome provides a promising approach for better understanding of biological roles of DNA methylation and demethylation dynamics in development and diseases.

Full list of author information is available at the end of the article

Author details

¹Howard Hughes Medical Institute, Harvard Medical School, WAB- 149G, 200 Longwood Ave., Boston, MA 02115, USA. ²Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB- 149G, 200 Longwood Ave., Boston, MA 02115, USA. ³Department of Genetics, Harvard Medical School, WAB- 149G, 200 Longwood Ave., Boston, MA 02115, USA. ⁴Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Ave., Boston, MA 02115, USA. ⁵Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Street, Cambridge, MA 02138, USA. ⁶Departments of Bioengineering, University of California at San Diego, La Jolla, California, USA.

Published: 18 March 2013

doi:10.1186/1756-8935-6-S1-P88 Cite this article as: Shen *et al*: Genome-wide analysis reveals TET-and TDG-mediated 5-methylcytosine oxidation dynamics. *Epigenetics & Chromatin* 2013 6(Suppl 1):P88.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Shen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁺ Contributed equally

¹Howard Hughes Medical Institute, Harvard Medical School, WAB- 149G, 200 Longwood Ave., Boston, MA 02115, USA