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Abstract 

Background Regulatory elements such as promoters, enhancers, and insulators interact each other to mediate 
molecular processes. To capture chromatin interactions of regulatory elements, 3C-derived methods such as Hi-C and 
Micro-C are developed. Here, we generated and analyzed Hi-C, Micro-C, and promoter capture Micro-C datasets with 
different sequencing depths to study chromatin interactions of regulatory elements and nucleosome positions in 
human prostate cancer cells.

Results Compared to Hi-C, Micro-C identifies more high-resolution loops, including ones around structural variants. 
By evaluating the effect of sequencing depth, we revealed that more than 2 billion reads of Micro-C are needed to 
detect chromatin interactions at 1 kb resolution. Moreover, we found that deep-sequencing identifies additional 
long-range loops that are longer than 1 Mb in distance. Furthermore, we found that more than 50% of the loops are 
involved in insulators while less than 10% of the loops are promoter–enhancer loops. To comprehensively capture 
chromatin interactions that promoters are involved in, we performed promoter capture Micro-C. Promoter capture 
Micro-C identifies loops near promoters with a lower amount of sequencing reads. Sequencing of 160 million reads 
of promoter capture Micro-C resulted in reaching a plateau of identifying loops. However, there was still a subset of 
promoters that are not involved in loops even after deep-sequencing. By integrating Micro-C with NOMe-seq and 
ChIP-seq, we found that active promoters involved in loops have a more accessible region with lower levels of DNA 
methylation and more highly phased nucleosomes, compared to active promoters that are not involved in loops.

Conclusion We determined the required sequencing depth for Micro-C and promoter capture Micro-C to generate 
high-resolution chromatin interaction maps and loops. We also investigated the effect of sequencing coverage of 
Hi-C, Micro-C, and promoter capture Micro-C on detecting chromatin loops. Our analyses suggest the presence of dis-
tinct regulatory element groups, which are differently involved in nucleosome positions and chromatin interactions. 
This study does not only provide valuable insights on understanding chromatin interactions of regulatory elements, 
but also present guidelines for designing research projects on chromatin interactions among regulatory elements.
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Background
Chromatin interactions have been studied using chroma-
tin conformation capture (3C) assay and its derivatives 
such as 4C, 5C, ChIA-PET, HiChIP, and Hi-C [1–6]. Spe-
cifically, Hi-C has been one of the most popular methods 
to study genome-wide chromatin interactions [7]. Hi-C 
assay has been useful in studying chromatin compart-
mentalization, topologically associating domains (TADs), 
and chromatin interactions [6, 8]. However, there are 
challenges on identifying high-resolution chromatin 
interactions from Hi-C. Because Hi-C uses restriction 
enzymes that give a bias on fragmentation of chromatin, 
the coverage of Hi-C is not comprehensive and uniform. 
Therefore, the average chromatin fragment size of Hi-C 
is 4 kb, which is bigger than most of regulatory elements 
[9].

Regulatory elements are reported to make loops to 
mediate molecular processes. Regulatory elements are 
identified using chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) with antibodies tar-
geting specific histone modifications or proteins (e.g., 
H3K4me3 for promoters, H3K27ac for enhancers, 
CTCF for insulators, H3K27me3 for repressed regions, 
and H3K9me3 for heterochromatin regions) [10]. The 
size of identified regulatory elements vary, but the aver-
age size of active regulatory elements such as enhanc-
ers and insulators is less than 2  kb [11–13]. Chromatin 
accessibility assays such as DNase-seq, ATAC-seq (Assay 
of Transposase Accessible Chromatin sequencing), 
and NOMe-seq (Nucleosome Occupancy and Methyl-
ome sequencing) identify nucleosome-depleted regions 
(NDRs) where transcription factors bind [10]. The aver-
age size of the identified NDRs is smaller than 1 kb [14, 
15]. Due to the size, it is difficult to detect comprehensive 
chromatin loops of regulatory elements and NDRs using 
Hi-C.

To overcome this limitation, recent studies have devel-
oped Micro-C, a novel method to study chromatin 
interactions at single nucleosome-resolution using Mic-
rococcal nuclease (MNase), which cleaves DNA around 
nucleosomes uniformly, yielding smaller fragment sizes 
when compared to restriction enzyme digestion [9, 16, 
17]. These studies have shown that Micro-C improved 
identifying chromatin interactions at higher resolution 
compared to Hi-C. Moreover, it is suggested to perform 
targeted sequencing (e.g., capture Micro-C) to reduce the 
sequencing cost to map chromatin interactions for the 
regions of interest. However, there are many questions 
needed to be addressed when designing experiments to 
study chromatin loops. For example, it is not yet clear 
how many sequencing reads and libraries of Micro-C 
and capture Micro-C are required to identify high-reso-
lution chromatin interactions in human cells. It is not yet 

characterized how sequencing depth of Micro-C affects 
the identification of chromatin loops. Furthermore, it is 
not yet comprehensively determined which chromatin 
loops of regulatory elements and NDRs can be captured 
using Micro-C.

To address these, here we performed Hi-C, Micro-C, 
and promoter capture Micro-C experiments in human 
prostate cancer cells. In detail, we compared Hi-C, 
Micro-C, and promoter capture Micro-C datasets and 
investigated the effect of sequencing depth on identifying 
global chromatin interactions. Moreover, we integrated 
chromatin interaction datasets with ChIP-seq datasets to 
investigate chromatin loops that involve regulatory ele-
ments such as promoter–enhancer loops. Furthermore, 
by analyzing them with NOMe-seq that independently 
maps nucleosome occupancy and DNA methylation lev-
els at single molecule resolution, we assessed the involve-
ment of nucleosome positions in chromatin interactions.

Results
Micro‑C captures more chromatin interactions than Hi‑C
To identify comprehensive chromatin interactions in 
human prostate cancer cells, we performed Hi-C and 
Micro-C in C42B prostate cancer cells. While Hi-C 
uses restriction enzymes that cleave specific sequences, 
Micro-C uses MNase to digest cross-linked DNA in 
regions that are not stably bound by proteins across the 
genome. Therefore, Hi-C can result in multi-nucleosome-
sized fragments while Micro-C resulted in mono, di, or 
tri-nucleosome sized fragments (Fig. 1A). After generat-
ing multiple replicates of Hi-C and Micro-C datasets, we 
sequenced Hi-C and Micro-C data at total 1 billion read 
pairs per data (Hi-C 1 billion data: total 1,094,888,777 
raw read pairs, Micro-C 1 billion data: total 1,050,616,368 
raw read pairs) (Additional file  1: Table  S1A). Hi-C and 
Micro-C reads are mapped to the genome using BWA 
MEM [18]; 79% of Micro-C reads were mapped to the 
genome, and 61% of Hi-C reads were mapped to genome 
(Additional file 1: Table S1). Starting from the total 1 bil-
lion read pairs, after removing duplicates (PCR dupli-
cates % for Hi-C 1 billion data: 9.78%, Micro-C 1 billion 
data: 15.36%) and invalid ligated reads using Pairtools 
(https:// pairt ools. readt hedocs. io/ en/ latest), Micro-C had 
560 million valid read pairs, and Hi-C had 433 million 
valid read pairs. Micro-C valid read pairs also included 
similar percentage of trans read pairs (pairs between dif-
ferent chromosomes) and cis read pairs (pairs between 
the same chromosome) (Additional file  1: Table  S1). To 
compare the coverage, we generated 1 kb, 2 kb, 4 kb, 5 kb, 
10 kb, and 20 kb resolution chromatin interaction heat-
maps using Hi-C 1 billion data and Micro-C 1 billion data 
(Fig.  1B, Additional file  2: Figure S1). Hi-C and Micro-
C data showed a comparable number of interactions at 

https://pairtools.readthedocs.io/en/latest
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lower resolutions like 20  kb. However, when we com-
pared Hi-C 1 billion data and Micro-C 1 billion data at 
higher resolutions, such as 5  kb and 2  kb resolutions, 

Micro-C showed better coverage than Hi-C (Fig.  1B, 
Additional file  2: Figure S1). However, at 1  kb resolu-
tion, both Hi-C 1 billion data and Micro-C 1 billion data 

Fig. 1 Comparison of Hi-C and Micro-C data. A Experimental methods of Hi-C and Micro-C. Unlike Hi-C that uses restriction enzyme, Micro-C 
uses MNase, allowing to fragment chromatin to mono, di-, and tri-nucleosomes. B Chromatin interaction heatmaps of Hi-C and Micro-C data near 
chr7p14 region. C Venn diagram of TADs identified from Hi-C and Micro-C. D Triangular heatmaps of Hi-C and Micro-C near chr1p32 region. TADs 
identified from each data are shown at the bottom. E Average chromatin interaction signals at shared loops (loops found in Hi-C and Micro-C) and 
unique loops are shown. F Triangular heatmaps of Hi-C and Micro-C near chr7p14 region and loops identified from each data are shown at the 
bottom
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displayed less interactions, indicating that 1 billion read 
pairs were not enough to detect chromatin interactions 
at 1 kb resolution.

Next, we identified TADs using TopDom program (Shin 
et al., 2016) from Hi-C 1 billion data and Micro-C 1 bil-
lion data at 50 kb resolution. We identified similar num-
bers of TADs from Hi-C and Micro-C data (Hi-C: 5,566 
vs Micro-C: 5,828) (Additional file  3: Table  S2). Hi-C 
and Micro-C displayed similar patterns of TADs that 
are about 450  kb sized, and identified TADs are mostly 
shared between datasets (Fig.  1C, D). When we com-
pared the number of identified chromatin loops using 
Mustache program [19], Hi-C 1 billion data and Micro-
C 1 billion data identified a similar number of loops at 
10 kb resolution (Hi-C: 25,377 vs Micro-C: 25,502), 25 kb 
resolution (Hi-C: 13,216 vs Micro-C: 12,890), and 50 kb 
resolution (Hi-C: 6,141 vs Micro-C: 6,407) (Additional 
file  4: Table  S3). However, at higher resolutions such as 
5 kb resolution, Hi-C data identified 22,945 loops while 
Micro-C data identified 28,390 loops; additional 5,000 
loops were identified in Micro-C data (Additional file 4: 
Table  S3). When we compared loops, 12,531 loops are 
commonly found in both Hi-C and Micro-C (shared 
loops), 10,414 loops are found exclusively in Hi-C (Hi-C 
only loops) and 15,386 loops are found exclusively in 
Micro-C (Micro-C only loops) (Fig. 1E). Micro-C identi-
fied more loops than Hi-C at 2 kb resolution (Hi-C: 4,429 
vs Micro-C: 7,744) and 1  kb resolution (Hi-C: 199 vs 
Micro-C: 909) (Additional file 4: Table S3). For example, 
we were able to detect more robust loops from Micro-C 
1 billion data than Hi-C 1 billion data at chr7q14 region 
(Fig. 1F).

More than 2 billion reads of Micro‑C are needed to capture 
chromatin interactions at 1 kb resolution
While Micro-C 1 billion data analysis identified more 
chromatin interactions at higher resolution compared 
to Hi-C 1 billion data, it still identified a small amount 
of chromatin interactions at 2  kb or higher resolution. 
Therefore, we generated additional libraries (total 16 
libraries) and sequenced Micro-C data to have 2 billion 
and 3 billion raw read pairs and performed comparison 
analysis (Additional file 1: Table S1). Similar to Micro-C 
1 billion data, both 2 billion and 3 billion data had about 
80% of its reads aligned to the genome. After removing 
PCR duplicates (PCR duplicates % for Micro-C 1 billion 
data: 15.36%, Micro-C 2 billion data: 16.44%, Micro-C 

3 billion data: 18.43%) and invalid read pairs, we used 
valid read pairs of Micro-C 1 billion data (560 million 
valid read pairs), 2 billion data (1.33 billion valid read 
pairs) and 3 billion data (1.89 billion valid read pairs) 
for downstream analyses (Additional file  1: Table  S1). 
Micro-C 1 billion, 2 billion, and 3 billion data identified 
over 5,800 TADs which are mostly shared (90%) among 
datasets (Additional file 3: Table S2). Micro-C 1 billion, 2 
billion, and 3 billion data showed comparable heatmaps 
and chromatin interaction patterns at lower resolutions, 
but Micro-C 2 billion and 3 billion data showed much 
stronger interaction signals at 1 kb resolution and iden-
tified more chromatin interactions that were not seen in 
Micro-C 1 billion data (Fig. 2A).

To comprehensively compare chromatin loops identi-
fied by Hi-C 1 billion, Micro-C 1 billion, 2 billion, and 3 
billion data at different resolutions, we identified chro-
matin loops at 1 kb, 2 kb, 5 kb, 10 kb, 25 kb, and 50 kb-
binned matrices of data using Mustache [19], SIP [20], 
and HiCCUPS [21] loop calling programs (Fig. 2B, Addi-
tional file 2: Figure S2A and S2B and Figure S3). At 50 kb, 
25 kb, and 10 kb resolutions, all of the datasets identified 
a comparable number of chromatin loops from all loop 
calling programs (Additional file  4: Table  S3). However, 
starting from 5  kb resolution, Micro-C 2 billion data 
and 3 billion data identified more chromatin loops than 
Micro-C 1 billion data. For example, Micro-C 2 billion 
data (2  kb resolution: 27,554, 1  kb resolution: 40,533) 
and 3 billion data (2  kb resolution: 566,22, 1  kb resolu-
tion: 54,506) identified substantially more chromatin 
loops at 1 kb and 2 kb resolutions, compared to Hi-C 1 
billion data (2 kb resolution: 4,429, 1 kb resolution: 199) 
and Micro-C 1 billion data (2 kb resolution: 7,744, 1 kb 
resolution: 909) (Fig. 2B, Additional file 4: Table S3). This 
pattern was also consistent among loop calling programs 
(Additional file 4: Table S3, Additional file 2: Figure S2A 
and S2B), indicating that more than 2 billion reads of 
Micro-C are needed to capture chromatin interactions at 
1 kb resolution.

Deeply sequenced Micro‑C data identifies additional 
long‑range loops that are not detected from relatively 
lowly sequenced data
Because Mustache program identified the greatest num-
ber of loops and the identified loops are largely shared 
with the loops from other loop calling programs, the 
loops identified from Mustache have been used in further 

Fig. 2 Comparison of Micro-C data in different read depth sequencing. A Chromatin interaction heatmaps of Micro-C 1 billion, 2 billion, and 
3 billion data near chr7q21 region. Heatmaps are generated at 1 kb resolution (top), 5 kb resolution (middle), and 10 kb resolution (bottom). B 
Numbers of loops identified by Mustache at different resolutions from Hi-C 1 billion, Micro-C 1 billion, Micro-C 2 billion, and Micro-C 3 billion data 
are shown. C Fractions of loops that have different lengths (distances) found from Hi-C 1 billion, Micro-C 1 billion, 2 billion, and 3 billion data are 
shown. D Numbers of loops shared (between any datasets) or unique among Hi-C 1 billion, Micro-C 1 billion, 2 billion, and 3 billion data are shown

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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analysis (Additional file 2: Figure S2C). Next, we investi-
gated if there is any difference on the distance of loops 
identified by datasets by categorizing loops to shorter 
distanced to longer-range loops (< 200 kb, 200 kb–400 kb, 
400  kb–600  kb, 600  kb–800  kb, 800  kb–1  Mb, > 1  Mb). 
Interestingly, we found that Micro-C 2 billion data and 3 
billion data called more long-range loops than Hi-C 1 bil-
lion data and Micro-C 1 billion data (Fig. 2C, Additional 
file 2: Figure S2D and S2E). For example, Micro-C 3 bil-
lion data called 2.8 times more loops that are > 1  Mb in 
distance than Hi-C 1 billion data at 5 kb resolution.

Next, we compared chromatin loops found among 
Hi-C 1 billion, Micro-C 1 billion, 2 billion, and 3 billion 
data to see how many of these loops were shared among 
each other at 5  kb resolution. Most of chromatin loops 
found in each dataset were also found in Micro-C 2 bil-
lion or Micro-C 3 billion data, with Micro-C 3 billion 
data identifying > 68% more unique loops than the oth-
ers (Fig. 2D, Additional file 2: Figure S2F and S2G). When 
we further examined the distance of unique and shared 
loops, we found that unique loops found in Micro-C 2 bil-
lion data and Micro-C 3 billion data had longer distance 
than the shared loops (Additional file  2: Figure S2H-
S2K). Particularly, Micro-C 3 billion data detected a lot 
of additional > 1  Mb-sized loops that were not detected 
from other datasets. Similar patterns are found in both 
10 kb resolution and 5 kb resolution analyses, indicating 
that deeply sequenced Micro-C data outperforms less 
sequenced data on identifying long-range loops.

Structural variants and interchromosomal loops in prostate 
cancer cells are identified using Micro‑C
Genomic rearrangements such as inversions, deletions, 
and translocations are observed in prostate cancer cells 
[22–25]. Structural variants, which are genomic rear-
rangements that affect large fragments of DNA, are 
commonly found in cancer genomes and play a key role 
in tumorigenesis [26]. Previous studies showed that it is 
possible to identify interchromosomal (between different 
chromosomes) and intrachromosomal (within a chromo-
some) structural variants, using chromatin interaction 
data such as Hi-C [27, 28]. Therefore, we used our C42B 
prostate cancer Hi-C and Micro-C data to identify struc-
tural variants using NeoLoopFinder [27]. We identified 
13–18 interchromosomal structural variants and 26–31 
intrachromosomal structural variants from Hi-C and 
Micro-C data. In total, 41 structural variants were found 
in Hi-C 1 billion data, 39 in Micro-C 1 billion data, 47 in 
Micro-C 2 billion data, and 46 in Micro-C 3 billion data 
(Fig. 3A, Additional file 4: Table S3).

When we compared the identified structural vari-
ants, there were no big differences in the number of 
deletions, duplications, inversions, or translocations 

identified among datasets (Fig. 3B). However, the number 
of chromatin loops newly gained due to structural vari-
ants (neoloops) increased as the read number increased 
(Fig.  3C). At 5  kb resolution, we identified 6 loops in 
Hi-C 1 billion data, 15 in Micro-C 1 billion data, 81 in 
Micro-C 2 billion data, and 136 in Micro-C 3 billion data 
(Fig.  3C). When we compared the newly gained loops 
around structural variants from datasets, the loops were 
largely shared among datasets, but the greatest number 
of loops was identified from Micro-C 3 billion data only 
(unique loops) (Fig. 3D). For example, we identified new 
chromatin interactions that were induced by inversion 
at chromosome 1p36 region. Inversion of chromosome 
1p36 region established new loops between 11.5Mbp 
and 27Mbp region near the ARID1A and DISP3 genes 
(Fig.  3E). By overlaying Micro-C signals with RNA-
seq signals, we noted that the ARID1A gene, which was 
reported to be dysregulated in prostate tumors [29], was 
lowly expressed in C42B prostate cancer cells while the 
DISP3 gene was not expressed.

A subset of regulatory elements is involved in chromatin 
loops
Regulatory elements are reported to be involved in loop-
ing [21]. Therefore, we further examined the regula-
tory elements that were involved in chromatin looping. 
To identify active regulatory elements, we used ChIP-
seq using specific antibodies of H3K4me3 (n = 12,716), 
H3K27ac (n = 30,329), and CTCF (n = 38,130), identifying 
reproducible and robust peaks from ChIP-seq replicates 
following the ENCODE guideline [30]. We also used 
H3K27me3 and H3K9me3 ChIP-seq to identify repro-
ducible repressed regions (n = 379,103) and heterochro-
matin regions (n = 140,678), respectively. Furthermore, to 
identify NDRs (n = 65,838) and nucleosome positions at 
single molecule resolution, we used NOMe-seq (Fig. 4A, 
Additional file 1: Table S1).

We next calculated the number of active promoters 
(defined using 2  kb windows of transcription start sites 
(TSSs) of expressed genes from RNA-seq, n = 27,002), 
active enhancers (defined as > 2 kb of TSSs with H3K27ac 
ChIP-seq peaks, n = 22,653), active insulators (defined 
as > 2  kb of TSSs with CTCF ChIP-seq peaks not found 
in active enhancers, n = 15,346), and NDRs without fea-
tures (NDRs identified by NOMe-seq not found in active 
promoters, enhancers, and insulators, n = 28,870) that 
are involved in loops from Hi-C and Micro-C data. We 
and others previously found that the number of regula-
tory elements involved in looping from Hi-C is rela-
tively small to the total number of regulatory elements 
[31, 32]. When we performed integrative analysis using 
Hi-C 1 billion, Micro-C 1 billion, 2 billion, and 3 billion 
data, we found that less than 40% of promoters were 
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Fig. 3 Chromatin loops near structural variants. A Numbers of inter- and intra-chromosomal structural variants identified from Hi-C and Micro-C 
data are shown. B Numbers of each category of structural variants identified from Hi-C and Micro-C data are shown. C Numbers of loops identified 
around the structural variants from Hi-C and Micro-C data are shown at 5 kb and 10 kb resolutions. D Numbers of neoloops (loops newly gained 
due to the structural variants) that are shared (between any datasets) or unique among Hi-C 1 billion, Micro-C 1 billion, 2 billion and 3 billion data 
are shown. E An example heatmap of Micro-C data near the ARID1A gene that includes inversion structural variant is shown on the top. Under the 
heatmap, RNA-seq and RefSeq gene tracks are shown. Example neoloops newly gained due to the structural variants are circled in blue
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located at chromatin loop anchors of Hi-C 1 billion 
data and Micro-C 1 billion data, and 57% of promoters 
were found for Micro-C 3 billion data at 5 kb resolution 
(Fig.  4B). As different chromatin loops can be called by 
each data, we determined the total number of promoters 
involved in looping (promoters that intersected with loop 
anchors). Interestingly, even when we combined all pro-
moters involved in loops from all datasets, only 69% of 
promoters were involved in chromatin looping. When we 
performed analyses for enhancers, similar patterns were 
detected (Fig.  4B). Insulators had the largest percent-
age of regions intersected with loop anchors as previous 
studies have shown that insulators are more enriched at 
loop anchors compared to promoters and enhancers [21, 
31, 32]. However, even from combined data, we found 
that 85% of insulators were involved in chromatin loop-
ing (Fig. 4B). For NDRs that do not overlap with promot-
ers, enhancers, and insulators (NDRs without features), 
we found that 54% of them were located at chromatin 
loop anchors (Fig. 4B). Our findings suggest that a sub-
set of active regulatory elements is involved in chromatin 
looping.

Next, we determined loop categories by overlapping 
each chromatin loop anchor with promoters, enhancers, 
insulators, other NDRs, repressed regions, and hetero-
chromatin regions (Fig.  4C). Looking at the loop cat-
egories, we found that the most common form of loop 
category was insulator–insulator, as expected from the 
high percentage of insulators intersecting with loops and 
previous studies reported [21, 33, 34], followed by insu-
lator–repressed, and insulator–enhancer loop categories 
(Fig. 4C). The promoter–enhancer loop category was the 
fifth most common loop category even when we gave 
more priority on defining regulatory elements (see Meth-
ods) in Micro-C 3 billion data (Fig.  4C). When we per-
formed analysis using different resolutions and Hi-C data 
and smaller reads Micro-C data, similar loop categories 
and ranks were observed, including the analysis which 
was performed at 1 kb resolution (Additional file 2: Fig-
ure S4).

The promoter–enhancer loop category is seen as 
an underlying transcription regulation by bringing 

an enhancer to interact with a promoter to regulate 
gene expression [35]. When we compared Hi-C 1 bil-
lion, Micro-C 1 billion, 2 billion, and 3 billion data, the 
number of promoter–enhancer loops identified slightly 
increased from Hi-C 1 billion data to Micro-C 1 billion 
data and saw bigger increases at Micro-C 2 billion and 
3 billion data (Fig.  4D). However, the total number of 
promoter–enhancer loops was small compared to the 
total number of active promoters and enhancers, sup-
porting that only a subset of promoters and enhancers 
is involved in chromatin loops. Comparison of statisti-
cal significance of chromatin interactions of the top 5 
loop categories revealed that there were no differences 
in the distribution of q-values for insulator–insula-
tor, promoter–insulator, enhancer–insulator, and pro-
moter–enhancer loops except for insulator–repressed 
loops (Fig.  4E). The insulator–repressed loops had 
slightly higher q-value (indicating less significant and 
lower chromatin interaction counts) than insulator–
insulator, promoter–enhancer, enhancer–insulator, and 
insulator–insulator loops (Fig. 4E, Additional file 2: Fig-
ure S5A).

Moreover, we compared the gene expression level 
of active promoters involved in different loop cat-
egories. We detected no noticeable differences in gene 
expression among active promoters involved in most 
loop categories (Additional file  2: Figure S5B). How-
ever, we found that gene expression level of promot-
ers involved in promoter–heterochromatin loops had 
lower expression levels than promoters involved in pro-
moter–enhancer loops and promoter–insulator loops 
(p-value < 3.14 e−5, p-value < 1.18 e−4, respectively) 
(Additional file  2: Figure S5B). When we also tested if 
ChIP-seq signals or NOMe-seq signals differ between 
regulatory elements that belong to different loop cat-
egories, we identified some marginal differences (Addi-
tional file  2: Figure S5C-H). For example, H3K27ac 
ChIP-seq signal values were relatively stronger for ones 
involved in enhancer–promoter loops than enhancer–
repressed loops and enhancer–heterochromatin loops 
(p-value < 4.18e−15, p-value < 1.76 e−05, respectively) 
(Additional file 2: Figure S5D).

Fig. 4 Regulatory elements and nucleosome-depleted regions (NDRs) that are involved in loops. A Genome browser screenshots of ChIP-seq 
(H3K4me3, H3K27ac, CTCF, H3K27me3, H3K9me3), NOMe-seq (DNA methylation, chromatin accessibility, nucleosome-depleted regions (NDRs)), 
Hi-C, Micro-C, and RefSeq Genes are shown. B Fractions of regulatory elements that intersect with loop anchors identified from Hi-C 1 billion, 
Micro-C 1 billion, 2 billion, and 3 billion data are plotted (left). A fraction of regulatory elements that intersect with loop anchors from any datasets 
is shown in grey (in loop) while the one not in loop is shown in orange (not in loop) (right). C Numbers of loops belong to different loop categories 
defined by intersecting the loop anchors with different types of regulatory elements (red: active promoter, orange: active enhancer, purple: active 
insulator, green: NDRs without features, grey: repressed region, pink: heterochromatin region, and white: none) are shown. They are in rank order 
with the most frequent category at the top and the 28th most frequent category at the bottom. Chromatin loops are called at 5 kb resolution using 
Micro-C 3 billion data. D Comparison of number of promoter–enhancer loops identified from Hi-C 1 billion, Micro-C 1 billion, 2 billion and 3 billion 
data. E Significance of chromatin interaction (q-value identified by Mustache) for top 5 loop categories. A mean q-value is shown in red. A median 
q-value is shown in blue

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Promoter capture Micro‑C identifies additional chromatin 
interactions involved in promoters which are not detected 
by Micro‑C
While Micro-C 3 billion data identified numerous chro-
matin loops, we found that only the subset of promoters 
was identified to be involved in loops, and the number of 
promoter–enhancer loops identified was still relatively 
low compared to insulators-involved loops (Fig.  4C). 
This could be due to the fact that insulators-involved 
loops are dominant for genome-wide Micro-C reads. 
Therefore, we tested by performing promoter capture 
Micro-C with probes that are designed to capture pro-
moter-specific chromatin interactions from Micro-C 
(Fig.  5A, Additional file  2: Figure S6A). Probes (120  bp 
in size) were designed to − 1 kb, − 0.5 kb, + 0.5 kb, + 1 kb 
of total 315,286 TSSs and were used to pull down pro-
moter regions from 8 Micro-C replicates by generating 
8 promoter capture Micro-C libraries; each library was 
sequenced about 20 million read pairs (Additional file 1: 
Table S1). 161,144 probes that span total 19,337,280 base 
pairs were used. There were total of 68,206,114 valid 
read pairs after filtering duplicates and invalid read pairs, 
which indicates that there were 423 valid read pairs per 
probe (Additional file 1: Table S1).

To compare chromatin interactions between Micro-
C data (total 3 billion read pairs) and promoter capture 
Micro-C data (total 182 million read pairs), we generated 
heatmaps at 2 kb, 5 kb, and 10 kb resolutions (Fig. 5B). 
Promoter capture Micro-C heatmaps at higher resolu-
tions such as 2  kb and 5  kb resolutions did not display 
similar patterns as Micro-C heatmaps because reads are 
sparse and specific regions are enriched for promoter 
capture Micro-C data (Fig.  5B). When we called TADs 
using promoter capture Micro-C data with TopDom pro-
gram [36], we identified 5,535 TADs (Additional file  3: 
Table  S2). When we compared these identified TADs 
with the TADs identified from Micro-C 3 billion data, 
76% of them were found common, which indicated that 
a large portion of TADs overlapped to each other, but the 
percentage of overlap was relatively less compared to the 
ones we calculated among Micro-C 1 billion, 2 billion, 
and 3 billion data (Additional file 3: Table S2).

To investigate chromatin loops of promoter capture 
Micro-C data, we called chromatin loops from promoter 
capture Micro-C datasets using Chicago loop calling 
program [37]. When we measured the number of chro-
matin loops from promoter capture Micro-C by increas-
ing the number of libraries and reads of sequenced, we 
found that the number of identified loops continued to 
increase but started to plateau around 160 million read 
pairs (Additional file 2: Figure S6B). We identified 10,000 
to over 70,000 loops from 20 million read pairs to 180 
million read pairs datasets (Additional file  2: Figure 
S6B, Additional file  4: Table  S3). We were able to iden-
tify 73,833 chromatin loops at 5 kb resolution using the 
promoter capture Micro-C data that includes 182 million 
read pairs (Additional file  4: Table  S3). When we com-
pared the identified chromatin loops with Micro-C data, 
the loops that were identified in both promoter capture 
Micro-C data and Micro-C 3 billion data had signifi-
cantly more chromatin interaction counts reflected with 
higher Chicago scores and lower Mustache q-values than 
loops that were only found in each data although all of 
loops were still comparably enriched (Fig. 5C, Mustache 
q-value < 0.20, Chicago score > 5). When we further com-
pared virtual 4C profiles of promoter capture Micro-C 
and Micro-C data using 3D genome browser [38], we 
were able to see that interaction patterns are consistent 
between datasets (Additional file  2: Figure S7), but the 
quality of overall interaction maps of deeply sequenced 
Micro-C data was higher than promoter capture Micro-C 
data.

To determine how many promoters were involved 
in loops, detected from promoter capture Micro-C, 
we calculated the percentage of promoters involved in 
looping. We found that more promoters were inter-
sected with anchors of the promoter capture Micro-C 
identified loops, compared to Micro-C 3 billion data 
(Fig.  5D). However, there were still 15% of promoters 
which were not involved in looping. When we inter-
sected the other side of the identified loop anchor of 
promoter capture Micro-C loops with other active 
regulatory elements, most of the promoters were 
either looped to promoters, insulators, enhancers, or 

(See figure on next page.)
Fig. 5 Promoter capture Micro-C data analysis. A An overview of promoter capture Micro-C experimental procedure, including the promoter probe 
design scheme. Probes (green bar) with biotins (orange circle) are designed surrounding TSSs, and Micro-C reads are pulled down using the probes 
for promoter capture Micro-C. B Chromatin interaction heatmaps of Micro-C and promoter capture Micro-C data near chr1q41 region at 2 kb (top), 
5 kb (middle), and 10 kb (bottom) resolutions. C Significance of chromatin interaction (Chicago score (-log p-value), Mustache (q-value)) for loops 
found in both promoter capture Micro-C and Micro-C (shared) and only one data is plotted. A mean value in shown in red. A median value is shown 
in blue. D Fractions of active promoters that intersect with the loop anchors from Micro-C 1 billion, 2 billion, 3 billion data or promoter capture 
Micro-C data are shown (left). A fraction of active promoters that intersect with loop anchors from any datasets is shown in grey (in loop) while the 
one not in loop is shown in orange (not in loop) (right). E Numbers of promoter-involved loops and loop categories (red: active promoter–active 
promoter, orange: active promoter–active enhancer, purple: active promoter–active insulator, green: active promoter–NDRs, grey: active promoter–
repressed region, pink: active promoter–heterochromatin region, and white: active promoter–none) identified from promoter capture Micro-C data 
are shown. Loops are called at 5 kb resolution
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repressed regions (Fig.  5E). Significance of promoter 
capture Micro-C chromatin loops measured by Chi-
cago scores among loop categories showed similar lev-
els except that promoter–heterochromatin loops had 

lower Chicago scores (less interaction counts) than 
other loop categories (Additional file 2: Figure S6C). In 
summary, promoter capture Micro-C identified addi-
tional loops involving promoters and other regulatory 

Fig. 5 (See legend on previous page.)
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elements while utilizing a lower amount of sequencing 
reads than Micro-C.

More highly phased nucleosomes are observed 
surrounding the active regulatory elements involved 
in chromatin loops
Next, we visualized Micro-C MNase signals at regulatory 
elements using Micro-C 3 billion data. At active promot-
ers, we found a substantial dip near TSSs with nucleo-
some phasing at downstream regions, indicating that 
they are largely accessible (Fig. 6A). A dip of Micro-C sig-
nals and surrounding nucleosome phasing patterns were 
also detected in other regulatory elements, such as active 
enhancers, active insulators, and NDRs without features. 
When we categorized active regulatory elements into two 
groups: ones that are enriched at chromatin loop anchors 
(in loop) and ones that are not enriched at chromatin 
loop anchors (not in loop), we found that nucleosome 

phasing signals surrounding the regions were different 
(Fig.  6A). For example, stronger dips and highly phased 
nucleosome signals were detected at active promoters 
and insulators involved in loops compared to ones that 
were not involved in loops (p-value < 0.023).

We further compared nucleosome positioning of active 
regulatory elements involved in loops and not in loops 
using independent NOMe-seq data (Fig.  6B). NOMe-
seq method is based on the treatment of chromatin with 
the M.CviPI methyltransferase, which identifies chroma-
tin accessible regions by methylating GpC dinucleotides 
that are not protected by nucleosomes at single mole-
cule resolution. NOMe-seq also maps endogenous CpG 
DNA methylation patterns genome-wide [14, 15]. Like 
Micro-C MNase signals showed, we found more acces-
sible regions at active promoters and insulators involved 
in loops than ones not involved in loops (p-value < 2.20 
e−16). DNA methylation levels were relatively lower in 

Fig. 6 Nucleosome phasing and DNA methylation levels around regulatory elements involved in loops. A Average Micro-C signals around active 
promoters, enhancers, insulators, and NDRs without features (NDRs that do not overlap with active promoters, enhancers, and insulators) that are in 
loop (black) vs those that are not in loop (orange) are shown. B Average chromatin accessibility levels (%) of active promoters, enhancers, insulators, 
and NDRs without features that are in loop (black) vs those that are not in loop (orange) are shown. C Average DNA methylation levels of active 
promoters, enhancers, insulators, and NDRs without features that are in loop (black) vs those that are not in loop (orange) are shown
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the promoters and insulators involved in loops than ones 
not involved in loops (p-value < 2.20 e−16) (Fig.  6C). 
This observation was still detected when we randomly 
selected the same number of regulatory elements per cat-
egory (in loop vs not in loop) and visualized the Micro-C 
and NOMe-seq signals (Additional file 2: Figure S8A–C).

H3K4me3 ChIP-seq signals were also stronger for 
active promoters in loops compared to those not in 
loops, and the similar pattern was also observed in CTCF 
ChIP-seq signals (Additional file  2: Figure S8D). ChIP-
seq signal difference was consistent even when we rand-
omized promoters and insulators and tested (Additional 
file  2: Figure S8E). Next, we checked if gene expression 
level was different between active promoters that are 
located at loop anchors and the ones that are not. We 
found that gene expression levels of active promoters 
involved in loops were not significantly different than 
those not found in loops, on average (p-value = 0.116) 
(Additional file 2: Figure S8F). Promoters that were found 
to be in promoter capture Micro-C loop anchors also had 
higher ChIP-seq signals and significantly higher accessi-
bility level than the promoters that did not intersect with 
promoter capture Micro-C loop anchors (Additional 
file  2: Figure S6D and E, p-value < 2.20e−16). This find-
ing summarizes that among active promoters and insula-
tors, ones enriched at chromatin loop anchors are more 
accessible, nucleosome depleted, and surrounded with 
stronger nucleosome positioning than those not found at 
chromatin loop anchors.

Discussion
Previous studies reported that Micro-C can identify 
chromatin interactions at high resolution [9, 16, 17]. 
However, it was not clear how many sequencing reads 
are needed to detect chromatin loops at what resolutions 
in human cancer cells. To investigate that, we performed 
Hi-C, Micro-C, and promoter capture Micro-C in C42B 
human prostate cancer cells and compared the coverage 
by changing the sequencing reads. When we compared 
Hi-C 1 billion data and Micro-C 1 billion data of human 
prostate cancer cells, we found that Micro-C identi-
fies > 23% more chromatin loops than Hi-C (Fig. 1). Deep 
sequencing of Micro-C data revealed that more than 
2 billion read pairs of Micro-C are needed to capture 
chromatin interactions at 1  kb resolution. Interestingly, 
loops newly identified from > 2 billion Micro-C data were 
longer in size than loops (> 1  Mb) found from 1 billion 
data (Fig. 2). We also found that increasing the sequenc-
ing depth of Micro-C allowed to identify more newly 
gained loops around structural variants (Fig.  3). Unlike 
chromatin loops called at high resolution, we did not see 
that much difference on calling TADs among Hi-C 1 bil-
lion data and differently sequenced Micro-C data (Fig. 1, 

Additional file 3: Table S2). This was due to the fact that 
TADs can be pretty accurately identified using low-reso-
lution chromatin interaction data (e.g., 50 kb resolution).

By integrating ChIP-seq and NOMe-seq data with 
Micro-C data, we characterized regulatory elements and 
NDRs that were involved in chromatin loops. In accord-
ance with previous findings [21, 33, 34], insulator–insula-
tor loops were most frequently found from our Micro-C 
data (Fig. 5). Increasing the sequencing depth of Micro-
C allowed to detect more promoter–enhancer loops, 
but the number of identified promoter–enhancer loops 
from deep-sequencing Micro-C data was still relatively 
low (Fig.  4). To capture more chromatin interactions, 
we performed promoter capture Micro-C, which identi-
fied additional chromatin loops involved in promoters 
that were not detected by Micro-C. Sequencing of 160 
million read pairs of promoter capture Micro-C data 
resulted in reaching a plateau of identifying chromatin 
loops that promoters were involved in (Fig. 5, Additional 
file  2: Figure S6B). Although overall quality and resolu-
tion of promoter capture Micro-C interaction map was 
lower than deeply sequenced Micro-C data, this find-
ing indicates that promoter capture Micro-C method 
can detect chromatin interactions of promoter regions 
identified from Micro-C in an efficient manner with less 
sequencing (Fig. 5, Additional file 2: Figure S7). Previous 
capture Micro-C and MNase 3C capture studies [39–41] 
were focused on targeted regions and may provide higher 
sensitive signals using a relatively small number of reads. 
However, these methods detect limited chromatin inter-
actions at the target regions while promoter capture 
Micro-C detects chromatin interactions of all promoter 
regions throughout the genome.

Interestingly, when we used promoter capture Micro-C, 
we found that > 15% of promoters were still not involved 
in loops called from deeply sequenced promoter capture 
Micro-C data (Fig.  5). Moreover, the total number of 
promoter–enhancer loops identified was less than 5,000. 
These findings could indicate that promoter–enhancer 
interaction is too dynamic to capture using 3C-based 
assays, or only a subset of promoters physically interact 
with enhancers. Furthermore, the number of functional 
enhancers that interact with promoters could be a lot less 
than what we estimated based on H3K27ac ChIP-seq. A 
previous study indicated that not all of H3K27ac marked 
enhancers are functional [42].

When we compared the characteristics of regulatory 
elements and NDRs that were involved in chromatin 
loops against those that were not, interestingly, the pro-
moters and insulators located at the loop anchors had 
more highly phased nucleosomes and stronger nucleo-
some positioning than the ones not located at loop 
anchors (Fig.  6). Moreover, chromatin accessibility level 
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was higher while DNA methylation level was lower for 
these regulatory elements located at the loop anchors. 
Particularly, promoters had substantial differences in 
DNA methylation and chromatin accessibility levels 
compared to other regulatory elements. This finding 
supports the idea that chromatin interaction is related 
to nucleosome positioning [43]. Several studies have 
reported the importance of nucleosome positioning in 
regulating gene expression [44, 45]. Although we saw 
differences in nucleosome phasing levels between active 
promoters located at loop anchors and ones that are not 
in loops, gene expression levels of active promoters were 
not significantly different regardless of looping (Addi-
tional file  2: Figure S8F). When we further measured 
gene expression levels of active promoters belonging to 
different loop categories, we found that active promot-
ers, which were looped to inactive regulatory elements 
(i.e., heterochromatin regions marked with H3K9me3, 
repressed regions marked with H3K27me3), had slightly 
lower expression than active promoters looped to active 
regulatory elements from Micro-C data analysis (Addi-
tional file  2: Figure S5B). Phanstiel et  al. previously 
reported that not only active promoters of genes that are 
highly expressed, but also inactive promoters are often 
involved in looping [46]. Based on this, it is suggested 
that the promoter involvement of chromatin looping does 
not always increase the gene expression levels. Moreover, 
gene expression levels of the active promoters involved 
in loops appeared to be affected by the characteristics 
of regulatory elements located at the other anchor, but 
further investigation is needed to better understand the 
chromatin structure of gene regulation.

Conclusions
In conclusion, we performed Hi-C, Micro-C, and pro-
moter capture Micro-C in prostate cancer cells and 
assessed to determine the required library and read 
numbers to generate high-resolution three-dimensional 
(3D) chromatin interaction maps and loops. The num-
ber of identified promoter–enhancer loops increased by 
increasing the sequencing depth of promoter capture 
Micro-C. However, the number of promoter–enhancer 
loops identified from deep-sequencing data was still rel-
atively small, compared to the total number of enhanc-
ers identified from H3K27ac ChIP-seq. By investigating 
the relevance of nucleosome positioning and chromatin 
interactions, we observed the possible effect of chromatin 
interactions in DNA methylation and nucleosome phas-
ing. Our findings also suggest the presence of distinct 
promoter groups, which are differently involved in chro-
matin structures and gene regulation. This work will ben-
efit research community by providing a framework and 

guidelines for designing research projects on chromatin 
interactions among regulatory elements and NDRs.

Methods
Cell culture
The human prostate cancer C42B cells were obtained 
from ATCC (Cat # CRL-3315, ATCC, Manassas, VA, 
USA). Cells were grown at 37 °C in 5% CO2. It was grown 
in RPMI1640 culture medium and supplemented with 
10% fetal bovine serum (Gibco by Thermo Fisher Scien-
tific, Waltham, MA, USA) and 1% penicillin and strep-
tomycin. All cell stocks were authenticated at the USC 
Norris Cancer Center cell culture facility by comparison 
to the ATCC and/or published genomic criteria for that 
specific cell line; all cells were documented as free of 
mycoplasma.

In situ Hi‑C
Hi-C fastq files were obtained from previous experi-
ments, which were performed in-house (GSE118629) 
[31]. In  Situ Hi-C experiments followed the original 
protocol by Rao et  al. with minor modifications.  MboI 
restriction enzyme was used for digestion, and T4 DNA 
Ligase (Cat # M0202, New England Bio Labs, Ipswich, 
MA, USA) was used for ligation. Chromatin was sheared 
to 300–500  bp with Covaris instrumented, and biotin-
tagged DNA was pulled down with Dynabeads MyOne 
Streptavidin C1 beads (Cat # 65,002, Life technologies, 
Carlsbad, CA, USA) with 2 × Binding Buffer (2 × BB: 
10 mM Tris–HCl (pH 7.5), 1 nM EDTA, 2 M NaCl). Hi-C 
libraries were amplified and sequenced in Illumina HiSeq 
2000.

Micro‑C
1 ×  106 cells were harvested and cross-linked with DSG 
and formaldehyde at room temperature. Cells were 
digested with MNase Enzyme Mix (Cat # PN DG-
NUC-001, Dovetail Genomics, Scotts Valley, CA, USA) 
and were lysed with SDS.  Lysate was mixed with Chro-
matin Capture Beads (Cat # PN DG-REF-001, Dovetail 
Genomics, Scotts Valley, CA, USA) to bind chromatin 
and incubated at room temperature for 10 min. End Pol-
ishing Master Mix was added to lysate and incubated for 
30 min at 22  °C and 30 min at 65  °C to end polish (Cat 
# PN DG-NUC-001, Dovetail Genomics, Scotts Val-
ley, CA, USA). For ligation, Bridge Ligation Mix (Cat # 
PN DG-NUC-001, Dovetail Genomics, Scotts Valley, 
CA, USA) and Bridge Ligase (Cat # PN DG-NUC-001, 
Dovetail Genomics, Scotts Valley, CA, USA) were 
added and incubated at 22  °C for 30  min, and Intra-
aggregate Ligation Buffer (Cat # PN DG-NUC-001, 
Dovetail Genomics, Scotts Valley, CA, USA) and Intra-
aggregate Ligation Enzyme Mix (Cat # PN DG-NUC-001, 
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Dovetail Genomics, Scotts Valley, CA, USA) were added 
and incubated at 22  °C for 1  h. DNA were isolated by 
reverse-crosslinking with Proteinase K and Crosslink 
Reversal Buffer, and incubating at 55  °C for 15  min, 
68  °C for 45  min. DNA was then purified. For library 
preparation, purified DNA was added with End Repair 
Master Mix (Cat # PN DG-LIB-001, Dovetail Genom-
ics, Scotts Valley, CA, USA) and incubated at  20  °C for 
30 min and 65 °C for 30 min for end repair. Adaptor for 
Illumina, ligation enzyme mix and ligation enhancer 
were added for adapter ligation, then DNA was purified 
using SPRIselect beads (Cat # CNGS050, Bulldog Bio Inc, 
Portsmouth, NH, USA). Adaptor-ligated DNA was then 
washed and captured with Streptadvidin beads (Cat # 
PN DG-REF-001, Dovetail Genomics, Scotts Valley, CA, 
USA). PCR was performed, and size range between 350–
1,000  bp was selected for the library. Prepared libraries 
were then sequenced with Illumina sequencers.

Promoter capture Micro‑C
For Promoter capture Micro-C, Micro-C libraries (total 
8 libraries) prepared using the above procedures were 
used. First, each library was pooled for hybridization 
reaction. Probe solution, made up of hybridization mix 
(Cat # CP2-HM-001, Dovetail Genomics, Scotts Val-
ley, CA, USA), pan promoter panel (Cat # CP3-PP-001, 
Dovetail Genomics, Scotts Valley, CA, USA) and water, 
was prepared and used for each hybridization reaction. 
For hybridization reaction, the probe solution was first 
heated to 95  °C for 2 min in a thermal cycler with a lid 
at 105  °C. Library was heated in similar way for 5  min. 
After cooling in ice for 5 min, and equilibrating to room 
temperature for 5 min, the probe solution was added to 
the library. Hybridization Enhancer (Cat # CP2-HM-001, 
Dovetail Genomics, Scotts Valley, CA, USA) was then 
added and the mixed solution was incubated at 70° 
for 16  h in a thermal cycler with the lid at 85  °C. After 
hybridization steps,  the hybridized targets were washed 
and captured with Streptavidin beads (Cat # CP1-
EM-001, Dovetail Genomics, Scotts Valley, CA, USA), 
amplified with PCR, and then purified. Prepared libraries 
were sequenced with Illumina sequencers.

Chromatin interaction data processing
Hi-C 1 billion data includes total 1,094,888,777 raw 
read pairs, Micro-C 1 billion data includes total 
1,050,616,368 raw read pairs, Micro-C 2 billion includes 
total 2,335,898,791 raw read pairs, and Micro-C 3 billion 
data includes total 3,430,994,736 raw read pairs (Addi-
tional file 1: Table S1). Both Micro-C and Hi-C data were 
processed using the 4DN Data Portal’s Hi-C process-
ing pipeline (https:// data. 4dnuc leome. org/ resou rces/ 
data- analy sis/ hi_c- proce ssing- pipel ine). Raw sequencing 

reads (fastq files) were first aligned to genome (hg38) 
using BWA MEM [18], and the aligned reads were paired, 
sorted, and filtered for PCR duplicates and invalid pairs 
using Pairtools (https:// pairt ools. readt hedocs. io/ en/ lat-
est) and converted into pairs files. Resulting pairs files 
were used to normalize and generate matrix files with 
Juicer [47]. When generating matrix files from Hi-C 
data, restriction enzyme information was incorporated, 
but not with Micro-C data since it did not use restric-
tion enzymes. Matrix files were generated at different 
resolutions and used for downstream analysis for Juicer 
[47] (hic files), Cooler [48] (cool files), and Samtools 
[49] (paired bam files). Bigwig files were generated from 
paired bam files with the bamCoverage function (nor-
malized using RPKM) of DeepTools [50]. Promoter cap-
ture Micro-C data were processed in the same manner.

TAD identification
First, hic files, which were generated using unique valid 
read pairs, were converted into sparse format with straw 
python package (https:// github. com/ igvte am/ hic- straw). 
Sparse format was then converted into dense format 
using HiCcompare R package [51] and processed to call 
TADs using TopDom [36]. To identify TADs, matrix files 
at 50 kb resolution were used with window size set up as 
5. The genomic coordinates (hg38) of identified TADs are 
listed in Additional file 3: Table S2.

Chromatin loop identification
Chromatin loops were identified using Mustache [19], 
HiCCUPS [21], and SIP [20] loop calling programs at 
50 kb, 25 kb, 10 kb, 5 kb, 2 kb and 1 kb resolutions with 
hic files, which were generated using unique valid read 
pairs,. These programs were selected because they did 
not require restriction enzyme information to be run, 
allowing to call loops from Micro-C data. To identify 
chromatin loops whose anchors are intersected with 
regulatory elements, we used 1  kb and 5  kb resolution 
chromatin interaction matrices of Micro-C and Hi-C 
datasets. To identify chromatin loops from promoter 
capture Micro-C data, we used Chicago loop calling 
program [37]. Because the current version of Chicago 
requires restriction enzyme information, which we do 
not have for promoter capture Micro-C data, we run the 
Dovetail Genomics script, which produces the restric-
tion enzyme map for Micro-C data that cuts uniformly 
throughout the genome (https:// github. com/ dovet ail- 
genom ics/ captu re/ tree/ main/ docs/ source)  before calling 
loops using Chicago.

ChIP‑seq
All ChIP-seq experiments were performed using 
H3K4me3 antibody (Cat # 9751S.

https://data.4dnucleome.org/resources/data-analysis/hi_c-processing-pipeline
https://data.4dnucleome.org/resources/data-analysis/hi_c-processing-pipeline
https://pairtools.readthedocs.io/en/latest
https://pairtools.readthedocs.io/en/latest
https://github.com/igvteam/hic-straw
https://github.com/dovetail-genomics/capture/tree/main/docs/source
https://github.com/dovetail-genomics/capture/tree/main/docs/source
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Cell Signaling and Technology, Inc., Danvers, MA, 
USA), H3K27ac antibody (Cat # 39,133, Active Motif, 
Carlsbad, CA, USA), CTCF antibody (Cat # 61,311, 
Active Motif, Carlsbad, CA, USA), H3K27me3 anti-
body (Cat # 9733, Cell Signaling and Technology, Inc., 
Danvers, MA, USA), and H3K9me3 antibody (Cat 
# 13,969, Cell Signaling and Technology, Inc., Dan-
vers, MA, USA) as part of previous studies [31, 44], 
and datasets were validated according to ENCODE 
standards.  H3K27ac (ENCSR279KIX) and CTCF 
(ENCSR460LGH) ChIP-seq data were obtained from 
ENCODE. H3K4me3, H3K27me3, and H3K9me3 
ChIP-seq data were obtained from previous experi-
ments (GSE102616, GSE40050, and GSE118629) 
(Additional file  1: Table  S1).  ChIP-seq data were 
aligned with BWA using hg38, and filtered with Picard 
(http:// broad insti tute. github. io/ picard/) and Samtools 
[49]. Peaks were then called with MACS2 and were 
checked for reproducibility with IDR [52] with FDR at 
0.05.

RNA‑seq
RNA was extracted with Trizol reagent (Cat # 15,596–
018, Thermo Fisher Scientific, NY, USA) then assessed 
with a 2100 Bioanalyzer instrument (Cat # G2939AA, 
Agilent Technologies, Santa Clara, CA, USA). RNA-
seq libraries were prepared with KAPA Stranded 
mRNA-Seq Kit with KAPA mRNA Capture Beads (Cat 
# KK8421, Kapa Biosystems, Woburn, MA, USA) then 
sequenced on an Illumina NextSeq 500 with 75  bp 
single end reads. RNA-seq was performed with tripli-
cate. Fastq files of RNA-seq data were obtained from 
previous experiment (GSE118629) (Additional file  1: 
Table S1). RNA-seq data were first trimmed with Trim-
galore (https:// github. com/ Felix Krueg er/ TrimG alore), 
and aligned with STAR [53] using hg38. It was then 
quantified with Rsem [54] and HTseq [55].

NOMe‑seq
NOMe-seq data were generated in C42B prostate can-
cer cells as part of the previous study (GSE102616) 
[44] (Additional file  1: Table  S1). First, chromatin 
was treated with M.CviPI methyltransferase (Cat # 
M0227B, New England Bio Labs, Ipswich, MA, USA) 
to methylate GpC dinucleotides and was followed by 
bisulfite treatment to methylate CpG dinucleotides, 
then sequenced with Illumina HiSeq 2000 sequencer. 
NDRs, identified with C42B NOMe-seq data in hg19 
from the previous study [44] were lifted over to hg38 
using UCSC genome browser’s liftover tool (https:// 
genome. ucsc. edu/ cgi- bin/ hgLif tOver).

Characterization of loops
Active promoters were defined as ± 2  kb windows from 
TSS of transcripts had higher than average 0.5 FPKM 
across the replicates (n = 27,004). Active enhancers were 
defined as > 2 kb of TSSs with H3K27ac ChIP-seq peaks 
(n = 22,653), and active insulators were defined as > 2 kb 
of TSSs with CTCF ChIP-seq peaks not found in active 
enhancers (n = 15,346) using bedtools2 [56]. H3K27me3 
ChIP-seq peaks that were not overlapped with active 
regulatory elements were defined as repressed regions 
(n = 371,614). H3K9me3 ChIP-seq peaks that were not 
overlapped with either active regulatory elements or 
repressed regions were defined as heterochromatin 
regions (n = 135,991) (Additional file 5: Table S4). These 
regulatory elements were then intersected using fuzzy-
join R package (https:// github. com/ dgrtwo/ fuzzy join). 
Difference_semi_join function of fuzzyjoin R package 
was used to overlap the genomic locations of regulatory 
elements and chromatin loop anchors. For 1  kb resolu-
tion data, ± 2 kb windows were used, and for 5 kb reso-
lution data, ± 10  kb windows were used to account for 
chromatin interactions that may not be in the exact bin. 
Additional file 5: Table S4 lists the genomic coordinates 
of regulatory elements as well as its overlap status with 
chromatin loop anchor; score of 1 is given when the regu-
latory element is intersected with the loop anchor while 
0 is given when it did not intersect. When intersecting 
regulatory elements with loop anchors for Figs. 4, 5, and 
Additional file  2: Figure S4, regulatory elements were 
prioritized in following order: promoter–enhancer–
insulator–NDRs without features–repressed regions–
heterochromatin regions–none.

Hi‑C, Micro‑C, and promoter capture Micro‑C data 
visualization
Hi-C, Micro-C, and promoter capture Micro-C chroma-
tin interaction heatmaps were visualized using cooltools 
(https:// github. com/ open2c/ coolt ools) at 10  kb, 8  kb, 
5 kb, 4 kb, 2 kb and 1 kb resolutions. Heatmaps were vis-
ualized at log scale with max score of 100 to allow com-
parisons between resolutions and datasets.  To visualize 
signals in Fig.  6, Additional file  2: Figure S6, and Addi-
tional file 2: Figure S8, bigwig files generated from Hi-C, 
Micro-C, and promoter capture Micro-C data were pro-
cessed with computeMatrix function from DeepTools 
[50]. The generated matrix files are used to plot signals 
around regulatory elements with plotHeatmap function 
from DeepTools [50]. For active promoters, plots were 
generated at the center of TSSs of active promoters we 
defined above. For active enhancers, plots were gener-
ated at the center of NDRs within active enhancers we 
defined above. For insulators, plots were generated at 

http://broadinstitute.github.io/picard/
https://github.com/FelixKrueger/TrimGalore
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://github.com/dgrtwo/fuzzyjoin
https://github.com/open2c/cooltools
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the center of CTCF motifs within insulators we defined 
above. CTCF motifs were downloaded from Homer [57]. 
For NDRs without features, plots were generated at the 
center of NDRs that did not intersect with active promot-
ers, active enhancers, and insulators. These regulatory 
elements were intersected with loop anchors using fuzzy-
Join R package (https:// github. com/ dgrtwo/ fuzzy join) as 
above, then separated into the regulatory elements that 
are in the loops (In loop) versus the regulatory elements 
that are not in the loops (Not in loop). To adjust the sam-
ple size effect, we randomly selected an equal amount 
of regulatory elements (active promoters: 10,000, active 
enhancers: 1,000, insulators: 1,000, and NDRs without 
features: 10,000) that are in loop vs not in loop 10 times 
using shuf command and generated plots (Additional 
file 6: Table S5).

ChIP‑seq signal visualization
For Additional file 2: Figure S6 and Additional file 2: Fig-
ure S8, ChIP-seq signals of regulatory elements in loop 
vs not in loop were assessed using bigwig files that were 
generated by merging ChIP-seq bam files with samtools 
[49], then converting with Deeptools bamCoverage func-
tion [50]. Signals were plotted at the center of above-
defined regulatory elements using plotHeatmap function 
from DeepTools [50]. To adjust the sample size effect, we 
randomly selected an equal amount of regulatory ele-
ments (active promoters: 10,000, active enhancers: 1,000, 
insulators: 1,000, and NDRs without features: 10,000) 
that are in loop vs not in loop 10 times using shuf com-
mand and generated plots.

NOMe‑seq signal visualization
To visualize DNA methylation and chromatin accessibil-
ity levels from NOMe-seq data, Bistools [58] was used 
with Bigwig files. Signals were plotted at the center of 
above-defined regulatory elements using plotHeatmap 
function from DeepTools [50]. Student’s t-test was per-
formed on DNA methylation and chromatin accessibil-
ity levels for regulatory elements in loop vs not in loop. 
To adjust the sample size effect, we randomly selected 
an equal amount of regulatory elements (active promot-
ers: 10,000, active enhancers: 1,000, insulators: 1,000, and 
NDRs without features: 10,000) that are in loop vs not in 
loop 10 times using shuf command and generated plots.

Shared loop analysis
To calculate how many loops are shared, difference_
semi_join from fuzzyJoin (https:// github. com/ dgrtwo/ 
fuzzy join) was used with loops identified from Hi-C, 
Micro-C 1 billion, 2 billion, 3 billion and promoter cap-
ture Micro-C data at 10 kb, 5 kb, 2 kb and 1 kb resolu-
tions (see Characterization of loops section). Because of 

the nature of difference_semi_join (for 1  kb resolution 
data, ± 2 kb windows were used, and for 5 kb resolution 
data, ± 10 kb windows were used to account for chroma-
tin interactions that may not be in the exact bin), there 
were some cases where one loop from one data inter-
sected with multiple loops in the other data, resulting in 
unequal amount of loops shared between the datasets. 
Additional file 4: Table S3 lists the genomic coordinates 
of loops as well as its overlap status with loops identified 
from other datasets; score of 1 is given when the loop is 
shared while 0 is given when the loop was unique.

After identifying the shared and the unique loops in 
each dataset, cooltools pileup function (https:// github. 
com/ open2c/ coolt ools) was used to analyze average 
chromatin interactions around the shared and the unique 
loops. 1  kb bins were used to calculate average interac-
tions, and 100 kb region around the loops were used to 
view the interactions. For Hi-C 1 billion data and Micro-
C 1 billion data comparison, loops generated from 5 kb 
resolution were used. For Micro-C 3 billion data and pro-
moter capture Micro-C data comparison, loops gener-
ated from 5 kb resolution were used.

Structural variant and neoloop analysis
To identify structural variants in C42B prostate cancer 
cells with chromatin interaction data, we used hic_break-
finder (https:// github. com/ dixon lab/ hic_ break finder) 
and NeoLoopFinder [27]. Cool file matrix files at 25 kb, 
10 kb, and 5 kb resolutions were used to calculate, seg-
ment, and copy number variations. Structural variants 
heatmaps, RNA-seq signals, and RefSeq genes were vis-
ualized using the visualization tools in NeoLoopFinder 
python package [27].

Virtual 4C profiles of Micro‑C and promoter capture 
Micro‑C data
To visualize chromatin interaction signals in a 4C-like 
genome browser, for Micro-C data, we used HiTC [59] to 
convert the sparse iced matrix files that were generated 
using HiC-Pro [60] into the dense matrix files. For pro-
moter capture Micro-C data, we used straw [61] to gener-
ate the dense matrix files from hic matrix files. Next, we 
generated btr files from dense matrix files using matrix-
ToButlr.pl script from BUTLRTools (https:// github. com/ 
yuelab/ BUTLR Tools). Then, the btr files were uploaded 
to 3D genome browser [38] to generate virtual 4C pro-
files. Both data types were binned at 10 kb resolution.

Abbreviations
3C  Chromatin conformation capture
3D  Three-dimensional
ATAC-seq  Assay of transposase accessible chromatin sequencing
ChIP-seq  Chromatin immunoprecipitation sequencing
MNase  Micrococcal nuclease

https://github.com/dgrtwo/fuzzyjoin
https://github.com/dgrtwo/fuzzyjoin
https://github.com/dgrtwo/fuzzyjoin
https://github.com/open2c/cooltools
https://github.com/open2c/cooltools
https://github.com/dixonlab/hic_breakfinder
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NDRs  Nucleosome depleted regions
NOMe-seq  Nucleosome occupancy and methylome sequencing
TADs  Topologically associating domains
TSSs  Transcription start sites
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Additional file 1: Table S1. Datasets used in this study. (A) data availabil-
ity (B) QC statistics of Micro-C, Hi-C, and promoter capture Micro-C data 
(C) Additional metrics of promoter capture Micro-C data.

Additional file 2: Figure S1. Example chromatin interaction heatmaps of 
Hi-C 1 billion data and Micro-C 1 billion data at high resolutions. (top) 1 kb 
resolution, (middle) 2 kb resolution, and (bottom) 4 kb resolution. Figure 
S2. Chromatin loops identified using Hi-C and Micro-C data. Numbers 
of loops identified by (A) SIP and (B) HiCCUPS loop calling programs at 
different resolutions (50 kb, 25 kb, 10 kb, 5 kb, 2 kb, and 1 kb resolutions) 
from Hi-C 1 billion, Micro-C 1 billion, Micro-C 2 billion, and Micro-C 3 bil-
lion data. (C) Fractions of loops shared among Mustache, SIP, and HiCCUPS 
loop calling programs. (D) Distribution of the number of loops at different 
lengths (distances) for Hi-C 1 billion, Micro-C 1 billion, 2 billion and 3 
billion data (loops are called at 10 kb resolution). (E) Distribution of the 
number of loops at different lengths (distances) for Hi-C 1 billion, Micro-C 
1 billion, 2 billion and 3 billion data (loops are called at 5 kb resolution). 
(F) The numbers of loops shared (between any datasets) among Hi-C 1 
billion, Micro-C 1 billion, 2 billion, and 3 billion data are plotted. Shared 
loops were identified with following priority comparisons; Micro-C 3 
billion, Micro-C 2 billion, Micro-C 1 billion, Hi-C 1 billion data. (G) An upset 
plot of Micro-C 3 billion loops showing the number of loops shared with 
loops identified from different datasets (Hi-C 1 billion, Micro-C 1 billion, 
Micro-C 2 billion data). (H) Distribution of the number of unique loops at 
different lengths (distances) for Hi-C 1 billion, Micro-C 1 billion, 2 billion, 
and 3 billion data (loops are called at 10 kb resolution). (I) Distribution 
of the number of unique loops at different lengths (distances) for Hi-C 
1 billion, Micro-C 1 billion, 2 billion, and 3 billion data (loops are called 
at 5 kb resolution). (J) Distribution of the number of shared loops at 
different lengths (distances) for Hi-C 1 billion, Micro-C 1 billion, 2 billion, 
and 3 billion data (loops are called at 10 kb resolution). (K) Distribution 
of the number of shared loops at different lengths (distances) for Hi-C 1 
billion, Micro-C 1 billion, 2 billion, and 3 billion data (loops are called at 
5 kb resolution). Figure S3. Example chromatin interaction heatmaps of 
Micro-C 3 billion data near loops called at 1 kb resolution. (left) shown is 
a heatmap at chr7:87,200,000–87,700,000 (middle) shown is a heatmap at 
chrX:9,800,000–10,300,000 (right) shown is a heatmap at chr9:36,000,000–
36,500,000. Figure S4. The number of loops belong to different loop 
categories. (A) Hi-C 1 billion data at 5 kb resolution, (B) Micro-C 1 billion 
data at 5 kb resolution, (C) Micro-C 2 billion data at 5 kb resolution, and 
(D) Micro-C 3 billion data at 1 kb resolution. They are in rank order with the 
most frequent category at the top and the 28th most frequent category 
at the bottom. Figure S5. Detailed analysis of chromatin loop catego-
ries identified from Hi-C and Micro-C data. (A) Statistical significance of 
chromatin interactions (q-value calculated using Mustache) of Hi-C 1 
billion data (left), Micro-C 1 billion data (middle), and Micro-C 2 billion 
data (right) for top 5 most frequent loop categories. (B) Gene expression 
levels of active promoters belong to different loop categories. Loops are 
called using Micro-C 3 billion data at 5 kb resolution. Statistical signifi-
cance (p-value) of gene expression level differences among groups are 
measured by performing Student’s t-test. Distribution of ChIP-seq signals 
for (C) active promoter (H3K4me3) loop categories, (D) active enhancer 
(H3K27ac) loop categories, (E) active insulator (CTCF) loop categories, (F) 
repressed region (H3K27me3) loop categories, and (G) heterochromatin 
region (H3K9me3) loop categories. (H) Distribution of chromatin acces-
sibility signals for NDR loop categories. A mean value is shown in red, and 
median value is shown in blue. Figure S6. Detailed analysis of promoter 
capture Micro-C data. (A) Genome browser screenshots of ChIP-seq, 
NOMe-seq, promoter capture Micro-C, and Micro-C data near the STEAP2 
gene. (B) Number of loops identified from promoter capture Micro-C 

data. Each library is sequenced about 20 million read pairs, and libraries 
are combined to call loops. The number of loops is called from 1 library 
to 8 libraries-combined promoter capture Micro-C at 5 kb resolution. (C) 
Chromatin interaction significance from promoter capture Micro-C (Chi-
cago score, -log q-value) of promoter loop categories are shown. Loops 
are called using promoter capture Micro-C data (182 million read pairs) at 
5 kb resolution. (D) Average H3K4me3 ChIP-seq signals around promoters 
that are in loop vs not in loop. (E) Chromatin accessibility levels (%) of 
promoters that are in loops vs not in loop are shown. Figure S7. Example 
virtual 4C profiles of Micro-C and promoter capture Micro-C. Using virtual 
4C, chromatin interaction signals of Micro-C 3 billion data (top) and 
promoter capture Micro-C 182 million data (middle) were plotted near 
three example loop regions at 10 kb resolution (chr1:12120000–12275000, 
chr1:182600000–182785000, chr7:100900000–100910000). The loop 
anchoring point is shown in the middle as a red line, and the other inter-
acting region of the loop is highlighted in blue. Refseq genes are shown at 
the bottom. Figure S8. Nucleosome phasing and ChIP-seq signal analysis 
for regulatory elements and NDRs in loop vs not in loop using Micro-C 3 
billion data. Average (A) Micro-C signals, (B) chromatin accessibility scores 
(%), (C) DNA methylation levels (%) around randomly shuffled (10 times) 
active promoters, enhancers, insulators, and NDRs without features in loop 
(black) vs not in loop (orange) are shown. (D) Average ChIP-seq signals 
around active promoters (H3K4me3 ChIP-seq), enhancers (H3K27ac ChIP-
seq), and insulators (CTCF ChIP-seq) in loop (black) vs not in loop (orange) 
are shown. (D) Average ChIP-seq signals around randomly shuffled (10 
times) active promoters (H3K4me3 ChIP-seq), enhancers (H3K27ac ChIP-
seq), and insulators (CTCF ChIP-seq) in loop (black) vs not in loop (orange) 
are shown. (F) Gene expression levels (FPKM) for active promoters in loop 
vs not in loop are shown. A mean value is shown in red, and median value 
is shown in blue.

Additional file 3: Table S2. Topologically Associating Domains (TADs) 
identified from this study. (A) TAD statistics of Hi-C, Micro-C, and promoter 
capture Micro-C data. TAD genomic coordinates of (B) Hi-C 1 billion data, 
(C) Micro-C 1 billion data, (D) Micro-C 2 billion data, (E) Micro-C 3 billion 
data, and (F) promoter capture Micro-C data.

Additional file 4: Table S3. Chromatin loops identified from this study. (A) 
summary table of loops called using Mustache (B) summary table of loops 
called using SIP (C) summary table of loops called using HiCCUPS (D) sum-
mary table of loops called using Chicago (E) summary table of neoloops 
and structural variants called using NeoLoopFinder (F) genomic coordi-
nates of loops found from Hi-C 1 billion data (G) genomic coordinates of 
loops found from Micro-C 1 billion data (H) genomic coordinates of loops 
found from Micro-C 2 billion data (I) genomic coordinates of loops found 
from Micro-C 3 billion data (J) genomic coordinates of loops found from 
promoter capture Micro-C data (K) genomic coordinates of structural vari-
ants and neoloops found from Hi-C 1 billion data (L) genomic coordinates 
of structural variants and neoloops found from Micro-C 1 billion data 
(M) genomic coordinates of structural variants and neoloops found from 
Micro-C 2 billion data (N) genomic coordinates of structural variants and 
neoloops found from Micro-C 3 billion data.

Additional file 5: Table S4. Regulatory elements and nucleosome-
depleted regions (NDRs) identified from this study. (A) Number of 
regulatory elements and NDRs identified from this study (B) genomic 
coordinates of active promoters, (C) enhancers, (D) insulators, (E) NDRs 
without features, (F) repressed regions, and (G) heterochromatin regions.

Additional file 6: Table S5. Number of loop categories identified by Hi-C, 
Micro-C, and promoter capture Micro-C data.
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