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Ubiquitin ligases HUWE1 and NEDD4 
cooperatively control signal-dependent 
PRC2-Ezh1α/β-mediated adaptive stress 
response pathway in skeletal muscle cells
Peng Liu1, Muhammad Shuaib1, Huoming Zhang2, Seba Nadeef1 and Valerio Orlando1* 

Abstract 

Background: While the role of Polycomb group protein-mediated “cell memory” is well established in developmen-
tal contexts, little is known about their role in adult tissues and in particular in post-mitotic cells. Emerging evidence 
assigns a pivotal role in cell plasticity and adaptation. PRC2-Ezh1α/β signaling pathway from cytoplasm to chromatin 
protects skeletal muscle cells from oxidative stress. However, detailed mechanisms controlling degradation of cyto-
plasmic Ezh1β and assembly of canonical PRC2-Ezh1α repressive complex remain to be clarified.

Results: Here, we report NEDD4 ubiquitin E3 ligase, as key regulator of Ezh1β. In addition, we report that ubiquitina-
tion and degradation of Ezh1β is controlled by another layer of regulation, that is, one specific phosphorylation of 
serine 560 located at Ezh1β-specific C terminal. Finally, we demonstrate that also Ezh1α needs to be stabilized under 
stress condition and this stabilization process requires decreased association pattern between another E3 ubiquitin 
ligase HUWE1.

Conclusions: Together, these results shed light on key components that regulate PRC2-Ezh1α/β pathway to direct 
modulation of epigenome plasticity and transcriptional output in skeletal muscle cells.
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Background
Besides its role in developmental memory, in adult post-
mitotic cells epigenome structure does not appear to be 
a rigid platform, but rather a dynamic system allowing 
plasticity to adapt transcriptional programs to naturally 
changing environmental cues.

Polycomb group proteins (PcG) and the role of 
H3K27me3 modification in maintaining cellular memory 
is well known [1–4]. Most of these studies focused on the 

contribution of Ezh2 histone methyltransferase (HMT) 
mediating H3K27 methylation. However, mammalian 
cells contain a second potential H3K27 HMT, Ezh1, 
highly related to Ezh2. Interestingly, Ezh1 is expressed 
mostly in embryonic stem cells, in combination with 
Ezh2, and in adult post-mitotic tissues where Ezh2 is 
absent [5–7]. In pluripotent cells, Ezh1 could compen-
sate for Ezh2 role in mediating H3K27 methylation 
both in vitro and in vivo [5, 6, 8, 9]. However, biochemi-
cal studies indicate Ezh1 as a weak HMT and its role in 
post-mitotic cells appears to be complex. Indeed, genome 
wide studies in skeletal muscle cells provided clues about 
direct association of Ezh1 with active promoters over-
lapping with H3K4me3-enriched regions [7, 10, 11] (not 
H3K27m3) and required for RNA Pol II elongation [10]. 
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However, we previously reported a novel molecular 
mechanism in skeletal muscle tissue physiology showing 
the role of PRC2-Ezh1 in modulating H3K27me3 epig-
enome plasticity in response to oxidative stress [12]. In 
detail, we found that Ezh1 produced two different iso-
forms, Ezh1α and Ezh1β exhibiting nucleus and cytosol 
exclusive localization, respectively. Under oxidative stress 
or atrophic conditions, Ezh1β is degraded through 26S 
proteasome system. In this way, EED will escape seques-
tration by Ezh1β and shuttle from cytosol to nucleus to 
give rise to canonical PRC2-Ezh1 repressive complex 
through the interaction with Ezh1α and SUZ12. This 
triggers Ezh1-dependent H3K27me3 signature and gene 
silencing at whole genome scale, allowing post-mitotic 
cells to adapt to oxidative stress thus, unveiling the plastic 
nature of PRC2-Ezh1 regulation. These findings suggest 
that Ezh1 is involved in different aspects of transcrip-
tional regulation, both activation and repression, through 
canonical PRC2-Ezh1 or non-canonical PRC2-Ezh1 path-
ways. This duality suggests a complex regulated activity 
of Ezh1 function.

Stoichiometric regulation of PRC2 components is an 
essential feature of PcG physiology [2]. In different con-
texts, the role of post-translation modifications (PTMs) 
in regulating Ezh2 stability, intracellular dynamics and 
activity has been reported. Smurf2-mediated K421 ubiq-
uitination of Ezh2 and degradation of Ezh2 facilitates 
hMSC neuron differentiation [13]. Recent data described 
Praja1 Ubiquitin ligase regulates stability of Ezh2 in a p38 
signaling-dependent manner during skeletal myogenesis 
[14, 15]. Many different ubiquitin E3 ligases have been 
reported to control Ezh2 in different tumor types [16–
18]. These include Trcp1/FBXW1, FBXW7 and TRAF6 
[16, 18, 19]. Ubiquitination and degradation of Ezh2 
were modulated in a phosphorylation-dependent manner 
[15, 18, 19]. These findings clearly highlight how differ-
ent PTMs work cooperatively to regulate activity of Ezh2 
under normal differentiation process or tumor cell types.

The mechanisms and role of PTMs in PRC2-Ezh1 
dynamics in adult tissues allowing epigenetic adaptive 
stress response are not known. Here, we report about 
the ubiquitin ligase dependent signaling dynamics of 
PRC2-Ezhα/β pathway in skeletal muscle cells. We show 
that NEDD4 is the major ubiquitin E3 ligase to mediate 
Ezh1β ubiquitination and degradation. Further, we iden-
tify Serine 560 phosphorylation as the signal essential 
for Ezh1β Ub-E3-ligase dependent degradation. More 
surprisingly, Ezh1α also exhibited a degradation dynam-
ics in response to stress. We show that Ezh1α requires 
stabilization under oxidative stress condition to facilitate 
canonical PRC2-Ezh1α efficient assembly and this func-
tion is controlled by HUWE1 ubiquitin E3 ligase. Overall, 
our data identify NEDD4 and HUWE1, as the key players 

working in cooperation to regulate the stability of Ezh1β 
and Ezh1α, respectively, allowing PcG-dependent epige-
netic adaptive response in skeletal muscles.

Results
Identification of ubiquitin E3 ligases associated with Ezh1β 
under oxidative stress condition
Our previous work demonstrated that, in response to 
oxidative stress, Ezh1β would undergo increased ubiquit-
ination and degradation by 26S proteasome pathway [12].

To identity candidate E3 ligases associated with Ezh1β, 
we used tandem affinity purification (TAP) strategy [20]. 
We constructed C2C12 cell line constitutively express-
ing Ezh1β tagged with FLAG and HA at its C terminal. 
Sub-localization of fusion protein Ezh1β-FLAG-HA was 
determined in myoblasts and differentiated myotubes. 
Immunostaining experiments clearly showed that Ezh1β-
FLAG-HA localized within cytosol, which is consistent 
with endogenous Ezh1β localization pattern as previ-
ously reported [12] (Additional file 1: Fig. S1a). We also 
checked relative expression level of Ezh1β-FLAG-HA 
compared with the endogenous Ezh1β protein. Expres-
sion level of exogenous Ezh1β-FLAG-HA was similar to 
endogenous Ezh1β level (Additional file 1: Fig. S1b). We 
noticed that in addition to one specific Ezh1β-FH band 
as predicted molecular weight, another two high molec-
ular bands were detected. To verify whether these two 
bands were containing Ezh1β polypeptide, we cut these 
two bands and sent them for mass spectrometry (MS) 
analysis. Ezh1β was highly represented with highest score 
in our MS analysis list (Additional file  2: Datasheet 1), 
confirming that these two bands are also Ezh1β-FH spe-
cific, although the reason remains to be elucidated. Fur-
ther, in  vivo ubiquitination assay was performed using 
Ezh1β-FLAG-HA stable cell line. The results clearly show 
poly-ubiquitination of Ezh1β levels increased upon oxi-
dative stress condition and exhibit as typical smear pro-
file (Additional file 1: Fig. S2).

Following  H2O2 treatment, all HA elute samples were 
subjected to SDS-PAGE and silver staining (Fig.  1a). 
In comparison with C2C12 wild-type mock samples, 
many specific protein partners were immunoprecipi-
tated through TAP assay (Fig. 1a). Then, HA elutes from 
both Ezh1β-FH stable cell line and wild-type C2C12 cell 
line were sent for mass spectrometry (MS) analysis and 
immunoprecipitated interacting protein partners were 
listed (Additional file  3: Datasheet 2). Specificity was 
confirmed by EED resulting as top interacting partner 
of Ezh1β in three independent experiments (Additional 
file  3: Datasheet 2 and Fig.  1b). Ubiquitin E3 ligases, 
HUWE1, NEDD4 and CUL7/FBXW8 were identified 
through this TAP strategy (Additional file  3: Datasheet 
2 and Fig.  1b). The specificity of these interactions was 
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further validated through co-immunoprecipitation cou-
pled to western blotting with antibodies specific for those 
three E3 ligases (Fig. 1c). We conclude that ubiquitin E3 
ligase, HUWE1, NEDD4 and FBXW8, are associated with 
Ezh1β within cytosolic compartment when post-mitotic 
muscle cells are under oxidative stress conditions.

NEDD4 is the major ubiquitin E3 ligase mediating 
Ezh1β ubiquitination and stability upon oxidative stress 
condition
We next verified which of the detected E3 ligases would 
be involved in ubiquitination and degradation of Ezh1β 
under oxidative stress condition. CHX chasing assay has 
been widely used to determine degradation rate of target 
protein [13]. CHX chasing assay confirmed Ezh1β degra-
dation through the 26S proteasome pathway (Additional 
file  1: Fig. S3a, b). We engineered stable knock-down 
cell line of each ubiquitin E3 ligase using shRNA hair-
pin strategy. Analysis of both transcription and protein 
level of each target clearly show that knock-down effi-
ciency produced by specific shRNA reached at least 60% 
down regulation (Additional file  1: Fig. S4). Then, we 
introduced Ezh1β-FH into scramble or E3 ligase knock-
down stable cell lines and performed CHX chasing assay 
to study degradation rate of Ezh1β in absence of each 
ubiquitin E3 ligase (Additional file 1: Fig. S4b, d, f ). We 
found that knock-down of either HUWE1 or FBXW8 

produced minor effects on Ezh1β stability when stable 
cell lines were challenged by oxidative stress (Additional 
file  1: Fig. S5). In contrast, when NEDD4 was depleted 
through shRNA knock-down, degradation of Ezh1β was 
significantly compromised (Fig.  2a, b). This implies that 
NEDD4 is the major ubiquitin E3 ligase involved in deg-
radation of Ezh1β under oxidative stress condition. Inter-
estingly, NEDD4 was reported to be involved in muscle 
atrophy condition [21, 22].

To verify whether NEDD4 indeed plays role as E3 ligase 
in mediating ubiquitination of Ezh1β and its degrada-
tion, we checked ubiquitinated Ezh1β levels in scramble 
and NEDD4 depletion background under normal and 
stress conditions (Fig.  2c). Once NEDD4 was removed 
using shRNA hairpin knock-down in  H2O2-treated cells, 
increase of Ezh1β ubiquitination pattern was severely 
compromised (Fig. 2c). We conclude that NEDD4 is the 
ubiquitin E3 ligase involved in ubiquitination of Ezh1β 
regulating its degradation when post-mitotic muscle cells 
are challenged by oxidative stress.

Next, we attempted to verify how NEDD4-mediated 
dynamic ubiquitination pattern of Ezh1β occurs under 
sudden changing physiological conditions. In a previ-
ous study it was reported that expression of NEDD4 
is upregulated following denervation-induced muscle 
atrophy condition [22]. Thus, transcription and protein 
levels of NEDD4 were checked. We found that NEDD4 
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were tandemly affinity purified from cytosolic extracts of C2C12 stable cell line which expresses C-terminally FLAG-HA tagged Ezh1β. Flag and 
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samples, after changing differentiation medium for 2 days, were challenged with 100 μM  H2O2 for 24 h. b Tandem affinity enriched Ezh1β-FLAG-HA 
associated proteins were identified by MS analysis. For each annotated protein, number of unique peptides and MASCOT score were listed. Three 
independent biological replicates data are presented. c Interaction among Ezh1β and ubiquitin E3 ligase: HUWE1, NEDD4 and FBXW8 were 
validated through co-immunoprecipitation (Co-IP) assay. Ezh1β-FH was immunoprecipitated from cytosolic extracts of two independent C2C12 
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transcription level increases dramatically (Fig.  3c), fol-
lowed by a slight upregulation of NEDD4 protein level 
(Additional file  1: Fig. S6). Ubiquitination of Ezh1β 
through NEDD4 requires association with each other, 
therefore we investigated the interaction between Ezh1β 
and NEDD4 under normal and stress conditions. Co-
immunoprecipitation assay showed that both endoge-
nous and exogenous Ezh1β-FH did not exhibit significant 
association dynamic changes pattern with NEDD4 under 
normal and atrophy conditions (Additional file 1: Fig. S6). 
Overall, although NEDD4 transcription level increased 
under oxidative stressed mimic atrophy condition, its 
protein level and association with Ezh1β did not exhibit 
dramatic changes upon oxidative challenging conditions. 
These data imply that additional mechanisms control 
NEDD4-dependent Ezh1β ubiquitination under oxidative 
stress condition.

Both canonical PRC2‑Ezh1 complex assembly 
and H3K27me3 signature were compromised 
after depletion of NEDD4
Our previous report showed that degradation of Ezh1β 
will release EED from cytosol to the nucleus, to facilitate 
canonical PRC2-Ezh1 repressive complex assembly [12]. 
Our data have demonstrated that NEDD4 is required 
for Ezh1β ubiquitination and degradation. Therefore, we 
determined the interaction between SUZ12 and EED 
in the nucleus in scramble and NEDD4 knock-down 

background under normal and stress conditions. Indeed, 
both EED isoforms exhibited enhanced association pat-
tern with SUZ12 in nucleus in scramble cell lines under 
oxidative stress condition (Fig. 3a, b). Moreover, dramatic 
decrease in interaction between SUZ12 and EED was 
observed when NEDD4 was depleted under oxidative 
stress condition (Fig. 3a, b).

Next, we verified how defective assembly of canonical 
PRC2-Ezh1 complex would influence Ezh1α occupancy 
and H3K27me3 status on muscle specific marker genes 
loci [12]. We checked Ezh1α occupancy and H3K27me3 
status on mCK enhancer, MyoG promoter and MYH8 
genomic region using ChIP-qPCR. Compared with the 
normally increased Ezh1α binding profile and H3K27me3 
pattern on those loci in oxidative stress condition, both 
Ezh1α occupancy, H3K27me3 levels and silenced state of 
the same genomic region were dramatically affected in 
 H2O2 treated NEDD4 knock-down cells (Fig. 3c–e).

Serine 560 phosphorylation of Ezh1β is required for its 
ubiquitination and degradation
Previous studies reported that phosphorylation of Ezh2 
has close and positive role in enhancing ubiquitination and 
degradation of Ezh2 [15, 18]. Therefore, we asked whether 
some potential phosphorylation sites might exist in Ezh1β. 
After careful scanning our MS spectra profile of peptides 
derived from Ezh1β, serine 560 was identified as one novel 
phosphorylation site specifically existing in Ezh1β (Fig. 4a, 
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input. Data were expressed as mean ± SD from three biological replicates. Values above each bar indicate Student’s t-test p value. e Transcription 
level of NEDD4, mCK, MyoG, MYH8 and Atrogin1 were analyzed using RT-qPCR in scramble and NEDD4 KD stable cell lines under normal and 
oxidative stress conditions. Data were expressed as mean ± SD from three biological replicates. GAPDH was normalized to get relative expression of 
each target. Values above each bar indicate Student’s t-test p value
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Fig. 4 Ezh1β Serine 560 phosphorylation is required for Ezh1β poly-ubiquitination and degradation upon oxidative stress. a Mass spectra showing 
phosphorylation site of Ezh1β localized at Serine 560 amino acid. b Sequence alignment between C terminal of Ezh1α and Ezh1β protein sequence. 
Consensus sequence was highlighted. c LC–MS/MS quantification of Ezh1βS560 phosphorylation levels under normal and oxidative stress 
conditions, p-value = 0.001702. d Increased Ezh1β Serine 560 phosphorylation status was validated through Immunoprecipitation of Ezh1β-FH 
coupled with immunoblotting through anti-HA, anti-p-Ser, respectively. Ponceau S staining was used as loading control. e Quantification of 
phosphorylated Ezh1β Serine 560 level presented in d, p-value = 0.0005. CHX chasing assay of Ezh1β-FH, Ezh1βS560D-FH (f) and Ezh1βS560A-FH 
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used as loading control. h–k Quantification of remaining Ezh1β-FH, Ezh1βS560D-FH (h, i) and Ezh1βS560A-FH (j, k) shown in f and g, respectively. 
MT means myotube stage sample and  H2O2 means myotube sample stressed with 100 μM  H2O2 for 24 h. Actin protein abundance was normalized 
and data were expressed as mean ± SD from three biological replicates. Values above each bar indicate Student’s t-test p value



Page 7 of 13Liu et al. Epigenetics & Chromatin           (2019) 12:78 

b). Ubiquitination of Ezh1β is enhanced under oxidative 
stress condition, therefore we sought to check whether 
serine 560 phosphorylation of Ezh1β would increase upon 
same condition. Indeed, compared with normal myo-
tube condition, serine 560 phosphorylated form of Ezh1β 
increased significantly upon stress treatment (Fig.  4c–e). 
Next, to decipher whether Serine 560 is involved in degra-
dation of Ezh1β, we used constitutively activated phospho-
rylation mutant Ezh1βS560D and Ezh1β resistant mutant 
Ezh1βS560A. CHX chasing assay, showed that rapid degra-
dation patterns of Ezh1β and Ezh1βS560D were lost when 
serine was changed to Ala under both normal and oxidative 
stress conditions (Fig. 4f–k). Next, we tried to investigate 
mechanism mediating Ezh1β phosphorylation-dependent 
ubiquitination. Actually, many possible mechanisms have 
been proposed and investigated to understand relation-
ship between phosphorylation and ubiquitination occur-
ring at the same target [23]. Our in  vivo ubiquitination 
assay of wild-type Ezh1β, phosphorylation deficient form 
of Ezh1βS560A and constitutive active mimic phosphoryla-
tion form of Ezh1βS560D, clearly showed that phosphoryl-
ation facilitates ubiquitination of Ezh1β (Fig. 5a). Therefore, 
we checked whether phosphorylation of Ezh1β would 
enhance interaction between substrate and ubiquitin E3 
ligase. Stable cell line constitutively expressing Ezh1β, 
Ezh1βS560A and Ezh1βS560D were used to pull down 
different forms of Ezh1β and determine their interactions 
with NEDD4. We found that both Ezh1β and Ezh1βS560D 

could be immunoprecipitated with NEDD4 under oxi-
dative stress condition, whereas Ezh1βS560A could not 
interact with NEDD4 under stress condition (Fig. 5b). We 
conclude that increased serine 560 phosphorylation of 
Ezh1β level upon oxidative stress would facilitate interac-
tion between NEDD4 and Ezh1β, which will enhance ubiq-
uitination and degradation of Ezh1β.

Ubiquitin E3 ligase HUWE1 controls Ezh1α homeostasis 
under normal conditions
We have characterized the mechanism regulating the sta-
bility and degradation of Ezh1β. In this context, another 
important question is about homeostasis of Ezh1α. To 
address this question, we firstly established C2C12 cell 
line expressing Ezh1α-FLAG-HA (Additional file  1: Fig. 
S7). Taking advantage of this stable cell line, we firstly 
checked Ezh1α degradation kinetics by using CHX chas-
ing assay. CHX chasing assay clearly showed that almost 
80% of Ezh1α was degraded after blocking translation 
process within half hour by CHX, partially restored 
when 26S proteasome signaling pathway was blocked by 
MG-132 (Additional file 1: Fig. S8). Interestingly, in com-
parison with degradation curve of Ezh1β, rate of Ezh1α 
degradation exhibited a steeper curve under normal 
condition. Thus we sought to identify potential interact-
ing protein partners involved in Ezh1α degradation pro-
cess. Tandem affinity purification strategy was performed 
to identify associated protein components with Ezh1α 
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under normal condition. Our MS analysis shown that not 
only PRC2-Ezh1 core components SUZ12 and EED were 
present, but some other ancillary components such as 
PHF1, AEBP2 and RBBP4/7 could also be detected using 
this strategy (Additional File 4: Datasheet 3; Fig. 6a, b).

Intriguingly, HUWE1 ubiquitin E3 ligase was captured 
in our Ezh1α TAP assay. To validate interaction between 
HUWE1 and Ezh1α, co-immunoprecipitation assay was 
performed. We found that both SUZ12, used as posi-
tive control for this assay, and HUWE1 are interacting 
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partners with Ezh1α in post-mitotic muscle myotube 
(Fig. 6c).

We demonstrated that ubiquitin E3 ligase HUWE1 
could interact with Ezh1α (Fig.  6b, c), thus, we wanted 
to know whether HUWE1 would modulate stabil-
ity of Ezh1α. To this we firstly established scramble 
and HUWE1 knock-down stable cell lines, expressing 
Ezh1α-FH in these two different genetic backgrounds 
(Additional file  1: Fig. S4). Then, we checked Ezh1α 
degradation pattern changes in presence or absence of 
HUWE1. CHX chasing assay performed in scramble and 
HUWE1 knock-down background demonstrated that 
Ezh1α degradation pattern in scramble background was 
strikingly restored in the absence of HUWE1 condition 
(Fig. 6d, e). Based on this observation, we reasoned that 
ubiquitination of Ezh1α could be affected due to deple-
tion of HUWE1. To address this question, we enriched 
for Ezh1α using tandem affinity precipitation and 
checked ubiquitination profiles of Ezh1α. When scramble 
stable cell lines were challenged with oxidative stress and 
expression of HUWE1 was reduced using shRNA knock-
down strategy, decreased ubiquitination profile of Ezh1α 
was strikingly lost (Fig. 6f ).

We conclude that ubiquitin E3 ligase HUWE1 is 
required for degradation of Ezh1α. In contrast, under 
stress conditions Ezh1α would be stabilized through 
reduced ubiquitination (Fig.  6f). These observations led 
us to ask whether either dynamic changes of HUWE1 
protein level or interaction between HUWE1 and Ezh1α 
stoichiometry would contribute to dynamic ubiquitina-
tion of Ezh1α. No significant changes were observed in 
HUWE1 levels between normal and stress conditions in 
scramble cell lines (Fig.  6f). However, when we immu-
noprecipitated Ezh1α and checked amount of HUWE1 
associated with Ezh1α the amount of HUWE1 associated 
with Ezh1α decreased dramatically in oxidative stress. 
Meanwhile, we also found that ubiquitinated Ezh1α level 
decreased as well and this contributed to stabilize Ezh1α. 
Moreover, in HUWE1 knock-down cell line, dynamic 
ubiquitinated profile changes pattern was lost in keep-
ing with the silencing role of Ezh1α and H3K27m3 in 
response to oxidative stress (Fig. 6f).

Discussion
Our findings unveil a novel signal-dependent mechanism 
where fine regulation of compartment specific levels of 
Ezh1β components is essential to allow PRC2 mediated 
adaptive function in skeletal muscle cells.

Our data identify the two distinct and specific 
E3-ubiquitin ligases that control abundance of Ezh1β in 
the cytoplasm and the stability of Ezh1α in the nucleus 

as key factors to control appropriate PRC2-Ezh1 activ-
ity in terminally differentiated cells. That is, low abun-
dance of Ezh1α pool would provide adequate Ezh1α 
level to maintain canonical (silencing) and non-canon-
ical (Pol II related) activity under normal condition. 
However, upon oxidative stress, PRC2-Ezh1 silencing 
function becomes necessary and prevalent, thus PRC2-
Ezh1 complex needs to be efficiently assembled and by 
this to exert canonical H3K27m3 mediated, adaptive 
function. To this, EED would be released from Ezh1β-
EED cytosol complex, while down regulation of Ezh1α 
would be prevented to guarantee that functional PRC2 
complex formation.

The other important aspect is signaling. Phosphoryl-
ation-dependent ubiquitination of Ezh2 was previously 
reported, and many phosphorylation sites were identified 
[19, 24]. Protein sequence between Ezh1β and Ezh1α is 
exactly the same except a short C terminal motif. How-
ever, in our MS spectra we did not identify any phos-
phorylation similar site to Ezh2. Surprisingly, only one 
specific phosphorylation site was identified from Ezh1β 
C terminal specific sequence. Therefore this phosphoryl-
ation-dependent ubiquitination confers signal specificity 
to Ezh1β environmental sensor function.

Oxidative stress condition and ROS production are 
very important indicator or inducer for many differ-
ent types of tumor [25, 26]. In this context, the elu-
cidation of the presented mechanism controlling the 
activity of PRC2-Ezh1α/β sheds light on and underlines 
the importance of plasticity in epigenetic control of cell 
homeostasis.

Conclusions
In this study we report about the identification of 
ubiquitin E3 ligases NEDD4 and HUWE1 mediating 
dynamics of PRC2-Ezh1α/β pathway, shedding light on 
novel mechanistic aspects of PcG biology and adaptive 
stress response. Moreover, we identify Serine 560 phos-
phorylation of Ezh1β as a key target required for its 
signal-dependent ubiquitination and degradation upon 
oxidative stress in skeletal muscle.

Materials and methods
Cell culture and treatments
C2C12 mouse skeletal myoblasts (ATCC; CRL-1772) 
were grown in Dulbecco’s modified Eagle’s medium 
(DMEM) (4.5 g/l d-glucose and Glutamax) (GIBCO) and 
10% fetal bovine serum (FBS; GIBCO) with penicillin–
streptomycin supplement, according to standard pro-
tocols. HEK293T (ATCC; CRL-3216) and Phoenix-Eco 
(ATCC; CRL-3214) were cultured in similar condition 
like mouse C2C12 plus 1  mM sodium pyruvate. When 
C2C12 reached 90–95% confluence, it was differentiated 
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to myofibers in DMEM and 2% horse serum (GIBCO) 
with penicillin–streptomycin supplement.

Where indicated, cells were treated with MG-132 
(Sigma, 10 μM), cycloheximide (CHX, Sigma, 100 μg ml−1). 
For in  vivo ubiquitination assay, MG-132 was added and 
treated for 4 h before protein extraction. For CHX chasing 
assay, CHX was added and treated as indicated time under 
normal myotube or stressed myotube. Oxidative stress was 
induced following previously described protocol [12].

Plasmids
For Ezh1α-FLAG-HA, Ezh1β-FLAG-HA,  EED500-FLAG-HA 
and  EED441-FLAG-HA, full-length CDS without stop codon 
were amplified with corresponding primers (Additional file 5: 
Table S1) and ligated into pJET1.2 (Thermo Fisher Scientific) 
vector for Sanger sequencing. Sanger sequencing confirmed 
inserts were cut with XhoI/NotI and finally ligated into pOZ-
C-FH vector.

For Ezh1α-2XT7, Ezh1β-2XT7, Ezh1βS560A-2XT7 
and Ezh1βS560D-2XT7, full-length CDS containing stop 
codon were amplified using indicated primers listed in 
Appendix Table EV1, then, similar strategy was used to 
clone inserts into pOZ-C-FH vectors.

For Lenti-HA-Ubi was purchased from Addgene (Plas-
mid, #74218). For pOZ-HA-Ubi, HA-Ubi was amplified 
from Lenti-HA-Ubi and cloned into pJET1.2 (Thermo 
Fisher Scientific) for Sanger sequencing, then finally 
cloned into pOZ-C-FH vector.

Plasmid transfection, retrovirus or lentivirus packaging 
and infection
To package retrovirus, Phoenix-Eco (ATCC;CRL-3214) 
was transfected using Lipofectamine 2000 (Thermo Fisher 
Scientific) according to standard protocol. Transfection 
medium was changed to virus collection medium (DMEM 
plus 5% FBS) after 8 h of lipofectamine transfection. After 
48  h, virus collection medium containing retrovirus was 
filtered with 0.45 μm filter and be ready for titer assay or 
transduction. Lentivirus production was performed in 
HEK293T (ATCC; CRL-3216) using 3rd Generation Pack-
aging Mix kit (Abmgood) following commercially pro-
vided protocol. Validated retroviral and lentiviral vectors 
containing GFP protein were used as positive control dur-
ing lipofectamine-mediated transfection process.

Freshly prepared and tittered retrovirus or lentivi-
rus was used to infect C2C12 mouse skeletal myoblasts 
(ATCC; CRL-1772), 8 μg ml−1 polybrene was added dur-
ing infection procedure. After 8 h, fresh growth medium 
was added to replace infection medium, after that, C2C12 
was allowed to grow another 24–48 h before they reach 
80% confluence. Then, positive cells were selected using 
Anti-CD25 beads (Invitrogen) for retrovirus infected 

cells, or selected using 1.6  μg  ml−1 for lentivirus trans-
duced positive cells.

pLKO shRNA lentivirus to target HUWE1, NEDD4 
and FBXW8 were purchased from Sigma: HUWE1 #1 
(TRCN0000092554), HUWE1 #2 (TRCN0000092555), 
NEDD4 #1 (TRCN0000092436), NEDD4 #2(TRCN00000 
92437), FBXW8 #1 (TRCN0000012731), FBXW8 #2(TR 
CN0000012732).

Protein extraction for co‑immunoprecipitation and tandem 
affinity purification
Cytosolic and nuclear extracts were prepared Extracts 
were prepared using our previous protocol with minor 
 modifications23. Briefly, cells were lysed in cytosolic 
extraction buffer (50 mM Tris–HCl, pH 8, 150 mM NaCl, 
0.5  mM EDTA, 0.5% Triton X-100, 5% glycerol). The 
nuclei were collected at 1500 g and 4 °C, and the superna-
tant was stored as cytosolic extracts. Nuclei were washed 
three times in cytosolic extraction buffer and suspended 
in nuclear extraction buffer (50  mM Tris–HCl, pH 8, 
50 mM NaCl, 0.5 mM EDTA, 0.5% Triton X-100, 5% glyc-
erol), sonicated (BRANSON A250 with a 3.2-mm tapered 
microtip; two cycles of 30  s at 20% amplitude, 50% of 
duty cycle). Debris was pelleted at 16,380 g and 4 °C, and 
the supernatant was used for nuclear fraction extracts. 
Before IP, NaCl concentration would be adjusted to 
150 mM.

For Co-IP, each IP was set up with 2 mg of protein in a 
final volume of 700 μl at a final concentration of 150 mM 
NaCl; then 7  μg of the appropriate primary antibodies 
were added and incubated with protein extracts over-
night at 4 °C on the wheel. The immunocomplexes were 
then recovered with 70 μl (1/10 of IP volume) of magnetic 
Dynabeads (Protein A for primary antibody produced in 
Rabbit/Protein G for primary antibody produced in mice; 
Invitrogen) and washed with wash buffer (50 mM Tris–
HCl, pH 8, 200  mM NaCl, 0.5  mM EDTA, 0.5% Triton 
X-100, 5% glycerol) four times, each time wash was car-
ried out for 5 min with rotation at 4 °C. Immuno-precip-
itates were eluted with 2XLDS loading buffer at 95 °C for 
5  min. The eluted immuno-precipitates were loaded on 
Bolt Bis–Tris precast gel (Invitrogen) and subjected to 
western blotting analysis. A list of antibodies used is pro-
vided in Appendix Table EV2.

For TAP, tagged proteins were immunoprecipitated 
with anti-Flag M2-agarose (Sigma), and eluted with Flag 
peptide (0.2  mg/ml). Further affinity purification was 
performed with anti-HA antibody-conjugated agarose 
(Pierce), and eluted with HA peptide (0.2  mg/ml). The 
HA and Flag peptides were prepared as 5  mg/ml stock 
in 50  mM Tris–Cl (pH 8.5) and 150  mM buffer, then 
diluted to corresponding concentration in TGEN 150 
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buffer (20  mM Tris at pH 7.65, 150  mM NaCl, 3  mM 
 MgCl2, 0.1  mM EDTA, 10% glycerol, 0.01% NP40). 
Between each step, beads were washed in TGEN 150 
buffer three times. Complexes were resolved by SDS-
PAGE and stained using the SilverQuest Silver staining 
kit (Invitrogen).

RNA preparation and qPCR
Total RNA was extracted with TRI Reagent (Sigma) 
according to manufacturer’s instructions. cDNA was pre-
pared starting at 1 μg of RNA from each sample with a 
QuantiTect reverse-transcription kit (Qiagen). Real-time 
PCR analyses were carried out using SsoAdvanced™ Uni-
versal  SYBR® Green Supermix (BioRad) and analyzed in 
CFX96 Touch™ Real-Time PCR Detection System (Bio-
Rad). The primer sequences are provided (Additional 
file 5: Table S1).

Chromatin immunoprecipitation (ChIP) and qPCR
Cells were cross-linked in 1% formaldehyde (Thermo 
Fisher Scientific, 28906) for 10 min at room temperature. 
Cross-linked cells were lysed in lysis buffer 1 (50  mM 
HEPES KOH, pH 7.5, 10 mM NaCl, 1 mM EDTA, 10% 
glycerol, 0.5% NP-40, 0.25% Triton X-100) overnight. 
Nuclei were collected, washed in lysis buffer 2 (10 mM 
Tris–HCl, pH 8, 200  mM NaCl, 1  mM EDTA, 0.5  mM 
EGTA) and lysed in lysis buffer 3 (10 mM Tris–HCl, pH 
8, 100  mM NaCl, 1  mM EDTA, 0.5  mM EGTA, 0.1% 
Na-deoxycholate, 0.5% N-lauroylsarcosine). Freshly pre-
pared 1 × protease inhibitor cocktail was added into all 
lysis buffers. Chromatin was sheared (BRANSON A250 
with a 3.2-mm tapered microtip; four to five cycles of 
2 min at 20% amplitude, 50% of duty cycle). In each IP 
reaction, 100  μg of chromatin DNA equivalents (DNA 
concentration detected at Nanodrop) were incubated 
overnight with 5–8 μg of antibodies. The immunocom-
plexes were recovered with magnetic Dynabeads (Pro-
tein A; Invitrogen) for 2 h and washed on the wheel at 
4 °C for 5 min with Low-Salt (LS) wash buffer (0.1% SDS, 
2  mM EDTA, 1% Triton X-100, 20  mM Tris–HCl, pH 
8, 150 mM NaCl) and High-Salt (HS) wash buffer (0.1% 
SDS, 2 mM EDTA, 1% Triton X-100, 20 mM Tris–HCl, 
pH 8, 500  mM NaCl). Then, LS and HS buffers wash 
were repeated one more time. Final wash was carried 
out with TE buffer plus 150  mM NaCl twice. Precipi-
tated DNA was eluted using elution buffer (50 mM Tris–
HCl, pH 8, 10 mM EDTA, 1% SDS) at 65 °C for 15 min. 
For de-cross-linking, all eluted samples were incubated 
at 65 °C overnight. Chromatin was digested with RNase 
A (0.2 mg/ml) and proteinase K (0.2 mg/ml), and DNA 
was purified for qPCR analysis. H3K27me3 ChIP results 
are expressed as percentage of input. A list of oligos 

and antibodies used are provided in Additional file  5: 
Table S1, Additional file 6: Table S2.

Immunofluorescence
Stable  C2C12 cell lines constitutively expressing 
Ezh1α-FH or Ezh1β-FH were cultured for myoblast or 
differentiated to myotubes were fixed with 4% PFA for 
15  min at room temperature, permeabilized with 0.1% 
Triton X-100 in PBS for 10  min, and blocked with 1% 
BSA solution. Primary antibody staining was performed 
for 1 h at room temperature in a 1% BSA solution at dilu-
tions of 1:200 for HA (Roche; 3F10) and 1:500 for MHC/
MF-20 (DSHB; 051320). After three times washes with 
0.1% PBS, secondary antibody staining was carried out 
at room temperature in a 1% BSA solution (1:500). Sec-
ondary antibodies conjugated Alexa Fluor 488 (Invitro-
gen, A-11006) or Alexa Fluor 568 (Invitrogen, A-11031). 
Mounting medium containing DAPI (Sigma, F6057) was 
used to counterstain nuclei localization. Images were 
obtained with a Leica TCS SP5 confocal microscope 
with an HCX PL APO 63.0×/1.40-NA oil-immersion 
objective.

Protein digestion and peptide fractionation
HA peptide eluted samples from TAP assay were diluted 
in 8 M urea in 0.1 M Tris–HCl followed by protein diges-
tion with trypsin according to the FASP protocol [27]. 
After an overnight digestion peptides were eluted from 
the filters with 25  mM ammonium bicarbonate buffer. 
Eluted peptide was processed desalting step by using 
Sep-Pag C18 Column (Waters) based on manufacture’s 
instruction.

Liquid chromatography–mass spectrometry (LC–MS) 
analysis and MS data analysis
The peptide mixture was measured on a Q Exactive HF 
mass spectrometer (Thermo Fisher Scientific) coupled with 
an UltiMate™ 3000 UHPLC (Thermo Fisher Scientific). Pep-
tides were separated using an Acclaim PepMap100 C18 col-
umn (75 um I.D. X 25 cm, 3 μm particle sizes, 100 Å pore 
sizes) with a flow rate of 300 nl/min. A 75-minute gradient 
was established using mobile phase A (0.1% FA) and mobile 
phase B (0.1% FA in 80% ACN): 5–40% B for 55 min, 5-min 
ramping to 90% B, 90% B for 5 min, and 2% B for 10-minute 
column conditioning. The sample was introduced into mass 
spectrometer through a  Nanospray Flex (Thermo Fisher 
Scientific) with an electrospray potential of 1.5 kV. The ion 
transfer tube temperature was set at 160 °C. The Q Exactive 
was set to perform data acquisition in DDA mode.  A 
full  MS  scan (350–1400  m/z range) was acquired in the 
Orbitrap at a resolution of 60,000 (at 200 m/z) in a profile 
mode, a maximum ion accumulation time of 100 ms and a 
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target value of 3 × e6. Charge state screening for precursor 
ion was activated. The ten most intense ions above a 2e4 
threshold  and  carrying multiple charges were selected  for 
fragmentation using higher energy collision dissociation 
(HCD).  The resolution was set as 15,000. Dynamic exclu-
sion for HCD fragmentation was 20  s. Other setting for 
fragment ions included a maximum ion accumulation time 
of 100  ms, a target value of 1 × e5, a normalized collision 
energy at 28%, and isolation width of 1.8.

The MS RAW files from Q-Exactive HF were converted 
to.mgf files using Proteome discoverer (V1.4) and ana-
lyzed using Mascot (Version 2.4) against mouse database 
(Uniprot Mus musculus database). The Mascot search 
results were further processed using Scaffold (Version 
4.1, Proteomesoftware Inc., Portland, OR, USA) for vali-
dation of protein identification and quantitative assess-
ment. For protein identification, it requires a minimal 
99% possibility for protein and with at least one peptide 
having a possibility greater than 95% according to the 
PeptideProphet [28] and ProteinProphet [29]. The label-
free quantification of proteins and phosphorylation pep-
tides were performed using Maxquant LFQ [30]. Detailed 
ratio calculation of phosphorylated Ezh1b Serine 560 for-
mula has been described previously [31].

Quantification of western blots
Band intensity of immunoblots was quantified using ImageJ 
software. Quantification was calculated by normalization 
to appropriate indicated internal references. For CHX half-
life experiments, the maximum was scaled to 1 by dividing 
all normalized time points by the normalized control.

Statistical analysis
Samples were compared using two-tailed, unpaired Stu-
dent’s t test, unless otherwise stated. Error bars were rep-
resented by SD± as indicated.
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