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Human monocyte-to-macrophage 
differentiation involves highly localized gain 
and loss of DNA methylation at transcription 
factor binding sites
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Abstract 

Background: Macrophages and their precursors monocytes play a key role in inflammation and chronic inflamma-
tory disorders. Monocyte-to-macrophage differentiation and activation programs are accompanied by significant 
epigenetic remodeling where DNA methylation associates with cell identity. Here we show that DNA methylation 
changes characteristic for monocyte-to-macrophage differentiation occur at transcription factor binding sites, and, 
in contrast to what was previously described, are generally highly localized and encompass both losses and gains of 
DNA methylation.

Results: We compared genome-wide DNA methylation across 440,292 CpG sites between human monocytes, naïve 
macrophages and macrophages further activated toward a pro-inflammatory state (using LPS/IFNγ), an anti-inflam-
matory state (IL-4) or foam cells (oxLDL and acLDL). Moreover, we integrated these data with public whole-genome 
sequencing data on monocytes and macrophages to demarcate differentially methylated regions. Our analysis 
showed that differential DNA methylation was most pronounced during monocyte-to-macrophage differentiation, 
was typically restricted to single CpGs or very short regions, and co-localized with lineage-specific enhancers irrespec-
tive of whether it concerns gain or loss of methylation. Furthermore, differentially methylated CpGs were located at 
sites characterized by increased binding of transcription factors known to be involved in monocyte-to-macrophage 
differentiation including C/EBP and ETS for gain and AP-1 for loss of methylation.

Conclusion: Our study highlights the involvement of subtle, yet highly localized remodeling of DNA methylation at 
regulatory regions in cell differentiation.
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Background
Inflammation is characterized by the recruitment of 
monocytes upon migration from the blood differenti-
ated into macrophages [1]. These cells participate in 
many aspects of inflammation such as host defense, tis-
sue remodeling and wound healing [2]. Due to their 
broad range of functional capacities, macrophages are 
important regulators of disease outcome. Local environ-
mental triggers can induce different activation states of 
macrophages. In vitro, cells treated with lipopolysaccha-
ride (LPS) plus interferon gamma (IFNγ) or interleukin-4 
(IL-4) are at the two extreme ends of the macrophage 
activation spectrum, with the first having pro-inflam-
matory characteristics and the latter being considered 
anti-inflammatory [3]. Foam cells (i.e., macrophage that 
have engulfed modified lipids in the arterial wall) play an 
important role in the development of atherosclerosis, the 
primary cause of cardiovascular disease, which can result 
in a myocardial infarction or stroke [4]. Understanding 
the molecular mechanisms controlling macrophage dif-
ferentiation and activation will aid in understanding their 
functioning in health and disease.

Differentiation and activation processes of mac-
rophages are accompanied by pronounced epige-
netic remodeling to accommodate the changes in their 
transcriptional repertoire [5]. DNA methylation is an 
essential component of the epigenome and defines cell 
identity. It occurs predominantly at CpG sites and previ-
ous studies identified loss of methylation as being domi-
nant during monocyte-to-macrophage differentiation 
[6, 7]. While loss of methylation at promoter regions is 
traditionally thought to increase gene expression, recent 
data challenge this view indicating that both gain and loss 
of methylation can be associated with increased tran-
scriptional activity in particular at non-promoter regions 
[8, 9]. What is known is that regions of dynamic DNA 
methylation between different cell types co-localize with 
enhancers and transcription factor binding sites [10], 
in line with a role of transcription factors in the meth-
ylation process. Recent studies showed that changes in 
DNA methylation can be both a cause [9] and conse-
quence [11] of transcription factor binding and may also 
be involved in stabilizing regulatory states [12]. So while 
the exact molecular role of DNA methylation appears to 
be context-specific, mapping dynamic DNA methylation 
may be instrumental in identifying the regulatory regions 
in the genome that control macrophage differentiation 
and activation.

Here, we investigated both genome-wide and whole-
genome DNA methylation changes in monocyte-to-mac-
rophage differentiation and subsequent activation (LPS/
IFNγ, IL-4, modified lipids). We found that not only loss 
but also gain of DNA methylation is common during 

macrophage differentiation. Of interest, such DNA meth-
ylation changes are highly localized, often affecting sin-
gle CpGs only, and primarily located in enhancer regions 
defined by specific transcription factor binding sites. 
Interestingly, we found that gain of methylation, a previ-
ously ignored phenomenon in monocyte–macrophage 
differentiation, was associated with increased binding of 
lineage determining TFs.

Results
Marked DNA methylation changes occur 
during monocyte‑to‑macrophage differentiation 
but not upon subsequent macrophage activation
Monocytes were isolated from four healthy donors and 
differentiated to macrophages in  vitro. They were sub-
sequently activated with LPS/IFNγ, IL-4, oxidized low-
density lipoprotein (oxLDL) or acetylated LDL (acLDL) 
to obtain different activation states. An overview of the 
study design and a summary of the primary characteriza-
tion of the cells are shown in Fig. 1 and Additional file 1: 
Figure S1.

We evaluated DNA methylation during differentia-
tion and further activation at 440,292 CpGs. Samples 
clustered primarily on sex (principal component 1, 
37% variance explained), donor (principal component 
2 and 3, 17% and 16% variance explained, respectively), 
in line with the genetic component of DNA methyla-
tion [8, 13] and also on monocyte versus macrophage 
differentiation (principal component 4, 6% variance 
explained) (Additional file 1: Figure S2). A paired analy-
sis testing for differences within donors identified 5870 

M-CSF

6-days

monocyte macrophage

M(LPS/IFNy) M(IL -4) M(oxLDL) M(acLDL)

24h

Fig. 1 Study design. Monocytes were isolated from four healthy 
donors and differentiated to macrophages in the presence of MCSF. 
Macrophages were subsequently activated to obtain different 
macrophage subsets
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differentially methylated CpGs (DMCs) (PFDR < 0.05, 
mean squares > 0.025) between the six cell types (Table 1 
and Additional file  2: Table  S2). The large majority  of 
DMCs could be attributed to monocyte-to-macrophage 
differentiation (98%, 5780 DMCs, Table  1). In contrast 
to previous data (6), DMCs included both gain of DNA 
methylation (gain-DMCs, n = 4283) and loss of DNA 
methylation (loss-DMCs, n = 1497), with the first being 
most common. DMCs had a mean methylation level that 
was uniformly distributed from ~ 0 to ~ 100%, and like-
wise the difference between monocytes and macrophages 
was similar across methylation levels (mean difference in 
methylation: 13%, Additional file 1: Figure S3). However, 
some DMCs switched from hypomethylated to hyper-
methylated and vice versa during differentiation (Addi-
tional file 1: Figure S3).

Subsequent activation of macrophages with IL-4 or 
lipids resulted in fewer than < 10 CpGs, while 69 DMCs 
(4 gain, 65 loss) were found in response to activation with 
LPS/IFNγ (Table  1 and Additional file  2: Table  S2). In 
addition, we identified a small number of DMCs where 
multiple macrophage types contributed to the difference 
in methylation: cg04739200 [macrophage and M (IL-4)], 
cg27000690 [macrophage and M (IL-4)], cg06850284 
[macrophage and M (acLDL)], cg26933866 [macrophage 
and M (LPS/IFNγ)] and cg23248885 [M (oxLDL)] and M 
[(acLDL)] (Additional file 1: Figure S4).

To validate our results, we re-analyzed a public 450k 
data set of monocytes, macrophages and LPS-acti-
vated macrophages [7]. Despite differences in culture 
(G-MCSF vs. MCSF) and activation conditions (LPS vs. 
LPS + IFNγ), we observed a high correlation of effect 
sizes for the 5870 DMCs between the two data sets 
(RMonocyte = 0.77, RMacrophage = 0.63 and RM(LPS/IFNγ) = 0.72, 
Additional file 1: Figure S5).

Genes linked to DMCs are enriched for processes 
involved in monocyte‑to‑macrophage differentiation 
and macrophage activation for both gain and loss 
of methylation
To identify potential pathways affected by DNA meth-
ylation changes, we subsequently mapped the DMCs 
to their nearest genes (Additional file  2: Table  S2). We 
observed that these genes included hallmark examples 
of genes involved in monocyte-to-macrophage differ-
entiation for both gain-DMCs (e.g., IRF8, CEBPB) and 
loss-DMCs (e.g., PPARG ) [14, 15] (Fig.  2). Additionally, 
we also found genes for LPS/IFNγ macrophage-specific 
activation (e.g., CCL5).

Pathway analysis showed strong enrichment for pro-
cesses involved in monocyte-to-macrophage differen-
tiation both for genes linked to gain-DMCs (2152 unique 
genes) and for genes linked to loss-DMCs (771 unique 
genes) (Fig. 3a). Of interest, the top 20 enriched pathways 
for gain-DMC-associated genes had seven processes 
in common with the top 20 enriched pathways for loss-
DMC-associated genes including ‘myeloid leukocyte acti-
vation,’ ‘single organism cell adhesion’ and ‘inflammatory 
response’ (Fig. 3a). Using public RNA-seq data, we found 
that gain of methylation was associated with a reduced 
transcription of the nearest genes (P value = 0.04) while 
loss of methylation was associated with increased tran-
scription (P value = 2.6 × 10−6), a trend that  was also 
observed for the genes in the seven overlapping pathways 
(Additional file 1: Figure S6).

Further analysis showed that gain and loss of meth-
ylation also shared their upstream regulator, tumor 
necrosis factor (TNF), a key inflammatory cytokine 
and known regulator of monocytes and macrophages 
(Fig.  3b). Together, these data imply that both gain and 
loss of DNA methylation are functionally important in 

Table 1 Summary of the primary results

DNA methylation in all subsets was measured using the Illumina 450k array, and an epigenome-wide analysis was performed using a linear mixed model with donor 
as random effect

Shown are the amount of differentially methylated CpGs (DMCs) during differentiation and activation based on partial t-statistic and split by gain and loss of 
methylation (PFDR < 0.05, mean squares > 0.0025)

Differentiation DMCs Gain Loss

5780 4283 1497

Activation DMCs Gain Loss

M (LPS/IFNγ) 69 4 65

M (IL-4) 6 3 3

M (oxLDL) 4 0 4

M (acLDL) 3 0 3

Macrophage‑specific DMCs

8
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monocyte-to-macrophage differentiation and suggest an 
involvement of TNF responses in methylation changes 
during differentiation.

For completeness, we performed a pathway analysis 
for the nearest genes of 65 loss-DMCs during LPS/IFNγ 
macrophage-specific activation, which revealed enrich-
ment for metal ion homeostasis, positive regulation 
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Fig. 2 DMCs mapped to their nearest gene include hallmark examples of macrophage-related genes. DNA methylation beta values for DMCs near 
genes involved in monocyte-to-macrophage differentiation (IRF8, CEPB, PPARG ) and for LPS/IFNγ macrophage activation (CCL5) for the four donors
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Fig. 3 Genes linked to DMCs are enriched for processes involved in monocyte-to-macrophage differentiation for both gain and loss of methylation. 
Enrichment analysis for differential DMCs mapped to their nearest gene for gain and loss of DNA methylation. a Pathway analysis for GO terms 
biological processes. b Upstream regulator analysis by Ingenuity Pathway Analysis (IPA). Shown is the Top 20
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of GTPase and cellular response to interferon gamma 
(Additional file 1: Figure S7).

Differential methylation during monocyte‑to‑macrophage 
differentiation preferentially occurs at enhancers
To characterize the regulatory landscape at the DMCs, 
we defined nine chromatin states in monocytes and mac-
rophages seperately using a hidden Markov model based 
on H3K4me1, H3K4me3, H3K27ac and H3K27me3 

histone marks available from public BLUEPRINT data 
(Fig.  4a, Additional file  3: Table  S3). DMCs associ-
ated with monocyte-to-macrophage differentiation 
were enriched for enhancers (H3K4me1) and active 
enhancers (H3K4me1 + H3K27ac) in both monocytes 
and macrophages (PFDR < 0.05) (Fig.  4b). Strikingly, 
this was not only the case for loss-DMCs (OR > 5.6), 
but also for gain-DMCs (OR > 3.8). Transcription start 
sites (TSS, H3K4me3) and repressed states (quiescent 
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Fig. 4 Chromatin states at DMCs are enriched for enhancers, and loss of methylation is enriched for regions that become more active during 
differentiation. a Emission parameters of the nine chromatin states learned using ChromHMM. b Enrichment analysis of DMCs based on chromatin 
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Page 6 of 13Dekkers et al. Epigenetics & Chromatin           (2019) 12:34 

(none), polycomb (H3K27me3) and bivalent states 
(H3K27me3 + H3K4me1 + H3K4me3) were under-
represented  at DMCs in both cell types (OR < 1). The 
enrichment of DMCs at enhancers as inferred from 
chromatin states was confirmed by analyzing enhancers 
identified through promoter capture Hi-C [16] in mono-
cytes (OR = 1.5, P value < 2.2 × 10−16) and macrophages 
(OR = 1.4, P value < 2.2 × 10−16).

A direct comparison of loss- versus gain-DMCs 
revealed that, as expected, gain-DMCs were relatively 
enriched in regions that remained repressed during 
monocyte-to-macrophage differentiation (i.e., quiescent, 
polycomb or bivalent; OR > 3.11 & PFDR < 0.05) or that 
acquired a repressed state in macrophages while being an 
enhancer or flanking active TSS in monocytes (OR = 5.9 
and 11.5, Fig.  4c). Conversely, loss-DMCs were gener-
ally enriched for regions that either lose a repressive or 
acquire a more active chromatin state during monocyte-
to-macrophage differentiation (e.g., quiescent regions 
becoming enhancers (OR = 3.4) and activation of enhanc-
ers (OR = 4.9).

DNA methylation changes are located at single CpGs 
or small regions that are enriched for changes DNAseI 
hypersensitive sites and specific transcription factor 
binding sites
To assess whether or not DMCs identified using the 
sparse 450k array represented differentially methylated 
regions (DMRs), we overlaid DMCs with public whole-
genome bisulfite sequencing data of monocytes and 
macrophages [17]. Of the 5870 DMCs, 4600 CpGs were 
sufficiently covered in the WGBS data. For the 4600 
CpGs, the difference in methylation between mono-
cytes and macrophages was generally similar in the two 
data types (R = 0.77, Additional file 1: Figure S8). 2213 
of the CpGs also met the threshold of a ≥ 5% meth-
ylation difference in the same direction in WGBS, a 
10.7-fold enrichment as compared with non-DMCs 
(P value < 2.2 ×  10−16). Surprisingly, for 26% of these 
CpGs, the methylation difference did not extend 
to neighboring CpGs and the differential methyla-
tion remained confined to a single CpG (Fig.  5a). The 
median number of differentially methylated CpGs was 
3, and consequently, the length of DMRs was generally 
short (median 112  bp, Fig.  5b). We hypothesized that 
such highly localized differences were associated with 
regulatory regions. Indeed, we found that the DMCs 
were enriched for changes in DNAseI hypersensitive 
sites  during monocyte-to-macrophage differentiation, 
a localized mark (~ 150  bp) of open chromatin often 
colocalizing with transcription factor (TF) binding [18]. 
This was true for both CpGs that gained (OR = 2.3, P 
value < 2.2 ×  10−16) and lost (OR = 8.4, P value < 2.2 × 

 10−16) methylation during differentiation (Fig. 5c). Sub-
sequent motif analysis of the DMCs involved revealed 
that gain-DMCs were enriched for binding sites of the 
TFs ETS and C/EBP, while loss-DMCs were enriched 
for bZIP motifs and contained mainly AP-1 TFs (AP-1, 
ATF3, JUNB) (Fig. 5d), all TFs that are known to play a 
role in monocyte-to-macrophage differentiation. Strik-
ingly, an analysis of ChIP-seq data revealed that gain 
of methylation at motifs of C/EBP and the ETS tran-
scription factor PU.1 was associated with increased 
binding of these TFs (C/EBP: OR = 12.2, P value = 1.0 
×  10−7, mean methylation difference = 28.1%; PU.1: 
OR = 15.9, P value = 1.4 ×  10−15, mean methylation dif-
ference = 27.7%, Fig. 5e).

Subjective cutoffs can obscure functionally relevant 
localized and gains of methylation
Previous studies primarily reported on  loss of DNA 
methylation during monocyte-to-macrophage differen-
tiation (6, 7), whereas we also identified substantial gain 
of methylation. We hypothesized that this was due to 
differences in analyses, in particular the choice for more 
stringent effect size cutoffs (10 or 30% difference in meth-
ylation versus 5% in our analysis) and the choice to focus 
on identifying DMRs covering at least 4 CpGs instead of 
individual DMCs. We therefore split our DMCs in sub-
sets based on these two thresholds (30% difference in 
methylation and ≥ 4 CpGs). As expected, a substantial 
proportion of DMCs was lost after applying these strin-
gent thresholds: 82.0% of DMCs when restricting DMCs 
to those with a > 30% difference, 52.9% when restricting 
to DMRs of at least 4 CpGs, and 87.9%  of DMCs were 
lost when both thresholds were applied simultaneously 
(Fig.  6). Inspection of gain- and loss-DMCs separately, 
however, indicated that the thresholds resulted in the 
exclusion of nearly all gain-CpGs (99.7%).

We next performed the functional enrichment analy-
ses we  applied previously (i.e.  chromatin segmentation, 
DNAseI hypersensitive sites and TF motifs) for DMCs 
surviving the different thresholds. Strikingly, enrichments 
were hardly affected provided that sufficient DMCs 
remained available for analysis (Fig. 6). This observation 
indicates that while gain of methylation co-localizes with 
the same functionally relevant genomic regions as loss of 
methylation, its occurrence was previously missed due to 
the application of stringent yet arbitrary thresholds. An 
example is the gain-DMC cg01059398 which is located 
in exon 2 of TNFSF10 (Additional file 1: Figure S9). The 
DMC did not extend to neighboring CpGs in WGBS 
data, but mapped to an enhancer with a PU.1 binding 
site in both monocytes and macrophages, that becomes 
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a DNAseI hypersensitive site and acquires CEBP binding 
during macrophage differentiation.

Discussion
We here report on dynamic DNA methylation dur-
ing monocyte-to-macrophage differentiation and sub-
sequent activation. We show that DNA methylation 
occurs primarily during monocyte-to-macrophage dif-
ferentiation and substantially less during macrophage 
activation. Dynamic methylation is not restricted to loss 

of methylation as previously reported but commonly 
involves gain of methylation. Surprisingly, genomic anno-
tations of regions acquiring gain and loss of methylation 
were similar and both were enriched for enhancers. Our 
data further reveal that remodeling of the epigenome 
during differentiation predominantly involves very local 
tweaking of the methylation status and not changes 
across larger regions. We found that these local changes 
are associated with binding sites of transcription factors 
responsible for macrophage identity including ETS and 
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C/EBP for gain of methylation, and bZIP motifs and AP-1 
factors for loss of methylation. Our data imply that local-
ized gains and losses of methylation are associated with 
specific changes in epigenomic regulation that play an 
important role in the differentiation process.

While previous studies primarily observed loss of 
methylation during monocyte-to-macrophage differen-
tiation [6, 7], we predominantly observe gain of DNA 
methylation. We found that both gain and loss of meth-
ylation are located near genes involved in monocyte-to-
macrophage differentiation and macrophage activation 
indicating that both gain (associated with reduced 
transcription of nearest genes) and loss (associated 

with increased transcription of nearest genes) of meth-
ylation are biologically relevant. In line with the latter, 
we found that these genes were enriched for pathways 
involved in cell morphogenesis, leukocyte migration, 
inflammatory response, myeloid leukocyte activation, 
response to lipid, response to wounding and single 
organism cell adhesion for both gain and loss of meth-
ylation. TNF, a pro-inflammatory cytokine secreted in 
response to activation of monocytes and macrophages 
and an important regulator of macrophage function 
[3], was predicted as a primary upstream regulator for 
both gain and loss in DNA methylation. The fact that 
TNF is associated with gain and loss of methylation 
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suggests that there is a rewiring of the TNF response 
upon monocyte-to-macrophage differentiation through 
alterations in epigenomic regulation.

While loss of methylation has previously been observed 
particularly at enhancer regions, we report that this is 
also true for gain of methylation. Nevertheless, gain of 
methylation mostly occurred at regions that become 
more repressed during monocyte-to-macrophage dif-
ferentiation. Conversely, loss of methylation occurs at 
regions that become more active, consistent with previ-
ous studies where similar effects were observed in B-cell 
differentiation [19] and in fetal development [20].

A key question in the field is whether DNA methylation 
changes across regions (encompassing multiple CpGs) 
are biologically more relevant than changes at individ-
ual CpGs [21]. We observed that methylation changes 
occur mainly at single CpG sites or small regions. These 
sites are enriched for changes in DNAseI hypersensitive 
sites. As a consequence, studies that set out to find dif-
ferentially methylated regions (DMRs), for example the 
study that reported differential methylation between 
monocytes and macrophages at DMRs (> 4 CpGs) [6], 
are expected to miss a substantial fraction of the DNA 
methylation changes, in particular at enhancers which 
are generally CpG poor [22]. Similarly, the choice of 
effect size cutoff plays a crucial role in DNA methyla-
tion studies. We found that the observation in previous 
studies that loss of methylation dominates monocyte-to-
macrophage differentiation may be an artifact of an arbi-
trary, stringent effect size threshold. Our analysis showed 
that DMCs with smaller effect sizes (5-30% difference 
in methylation) and/or occurring as single DMCs or 
part of a small DMC (< 4 CpGs) were likewise enriched 
for enhancers, DNAseI hypersensitive sites and similar 
TF-binding sites. Hence, gain and loss of methylation 
may be equally relevant for understanding differentia-
tion. The use of seemingly conservative cutoffs that lack 
a compelling biological foundation will lead to a biased 
and incomplete view of epigenomic remodeling during 
cell differentiation. Complex functional studies would be 
required to derive biologically relevant thresholds.  This 
finding may be equally relevant for the analysis and inter-
pretation of epigenome-wide association studies of envi-
ronmental exposures and disease traits.

We report that DMCs for both gain and loss of meth-
ylation are enriched at binding sites for TFs known to 
control macrophage function. Gain of methylation is 
enriched for binding sites of C/EBP and ETS (e.g., PU.1) 
TFs, while loss of methylation is enriched for binding 
sites for TFs with bZIP motifs, like AP-1 factors (AP-1, 
ATF3, JUNB). Some of the DMCs were outside the actual 
TF-binding motif. Although previous studies showed 
that both DNA methylation [8] and genetic variation [23] 

near but not in the motif can affect TF binding, our study 
cannot establish whether DMCs influence TF binding or 
are a passive marker of this phenomenon. Macrophage-
specific enhancers are in general enriched for motifs that 
bind lineage determining transcription factors (LDTFs) 
determining cell identity [24]. In mouse macrophages, 
enhancers are enriched for motifs that bind PU.1 (ETS 
factor) and CEBP, which are required for the differentia-
tion and function of macrophages [25, 26]. Motif analysis 
of the enhancers which overlapped with open chromatin 
identified the LDTFs PU.1 and C/EBPβ and C/EBPα as 
central regulators of myeloid enhancers [27]. Also human 
macrophage enhancers are enriched for C/EBP and PU.1 
binding motifs [28]. Interestingly, we identified these 
two LDTFs to be associated with gain of methylation. In 
contrast, we found AP-1-like TFs to be strongly associ-
ated with loss of methylation. AP-1 like factors are TFs 
involved in differentiation but also in regulating mac-
rophage activation and production of inflammatory fac-
tors such as cytokines and chemokines [14, 29].

Whether the DNA methylation changes we observe 
drive monocyte-to-macrophage differentiation or are a 
consequence of changes in (epigenomic) regulation or 
stabilize regulatory states [12] is an open question. The 
DNA methylation changes we observe may, for exam-
ple, be the downstream effects of histone modifications 
or transcription factor binding [8, 30]. Moreover, feed-
back mechanisms may be at play in which occupancy 
of a transcription factor binding site inhibits local DNA 
methylation and vice versa methylation of that binding 
site inhibits transcription factor binding [31]. Systematic 
in  vivo experiments need to be performed for each of 
these scenarios to unequivocally elucidate the biological 
situation.

Conclusion
Epigenetic remodeling during monocyte-to-macrophage 
differentiation involves highly localized gain and loss of 
DNA methylation changes at binding sites of transcrip-
tion factors.

Materials and methods
Monocyte isolation and macrophage culture
Peripheral blood mononuclear cells were isolated from 
four healthy donors [three males; mean age 31.5 (SD 4.7)] 
from buffycoats (Sanquin blood supply, Amsterdam, the 
Netherlands) through density centrifugation using Lym-
phoprep™ (Axis-Shield, Dundee, Scotland). Monocytes 
were purified using human CD14 magnetic beads and 
 MACS® cell separation columns (Miltenyi Biotec, Ber-
gisch Gladbach, Germany). Monocytes were plated in 
6-well tissue culture plates at a density of 1 ×  106 cells/
mL for 45 min allowing monocyte adherence in Iscove’s 
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Modified Dulbecco’s Medium (IMDM, Sigma-Aldrich, 
Zwijndrecht, The Netherlands) supplemented with 
2  mM  l-glutamine, penicillin (100 U/mL), streptomy-
cin (100 µg/mL) and 1% fetal calf serum (FCS; All Gibco, 
Waltham, MA). Hereafter, monocytes were used for 
experiments or differentiated to macrophages by replac-
ing the medium with IMDM plus 10% FCS and 50 ng/mL 
MCSF (Miltenyi Biotec, Bergisch Gladbach, Germany) 
for 6 days. On day 3, half the medium was removed and 
substituted by fresh IMDM with 10% FCS and 50 ng/mL 
MCSF. On day 6, all media were removed and replaced 
by IMDM with 10% FCS without MCSF and cells were 
activated by various stimuli for 24  h to gain different 
macrophage activation states: LPS/IFNγ (10  ng/mL, 
Sigma-Aldrich, Zwijndrecht, The Netherlands; 50 ng/mL 
R&D Systems, Minneapolis, MN), IL-4 (50  ng/mL, Pre-
ProTech, Rocky Hill, NJ), oxLDL (50 µg/mL Sanbio B.V., 
Uden, The Netherlands) and acLDL (50  µg/mL Sanbio 
B.V., Uden, The Netherlands) (Fig. 1).

Flow cytometry
As a control for monocyte/macrophage purity and acti-
vation, we performed flow cytometry on all subsets. 
0.2 ×  106 cells were blocked and stained with the fol-
lowing antibodies for purity and differentiation: CD14, 
CD16, HLA-DR, CCR5, CD68; LPS/IFNγ activation: 
CCR7 and CD64 or IL-4 activation: CD200R and CD206 
(Additional file  1: Table  S1). CD68 was stained intra-
cellular after fixation and permeabilization following 
manufactures instruction (eBioscience, San Diego, CA). 
Fluorescence was measured with BD Canto II and ana-
lyzed with FlowJo software version 7.6.5. (FlowJo, LLC, 
Ashland, OR). Monocyte purity was based on CD14 + or 
CD16 + gating, and the expression of surface markers is 
presented as median fluorescence intensity (MFI).

Oil red O staining
To visualize lipid uptake, cells were plated on coverslips 
and lipids were stained with Oil Red O staining (0.3% 
in 60% isopropanol, Sigma). Pictures were made with a 
Leica DM3000 microscope.

DNA methylation
Genomic DNA was purified using the QIAamp DNA 
Blood Mini Kit (Qiagen, Hilden, Germany), bisulfite con-
verted (500 ng) with the Zymo EZ DNA methylation kit 
(Zymo Research, Irvine, CA, USA) and hybridized (4 μl) 
on the Illumina 450K array using the manufacturer’s 
protocol (Illumina, San Diego, CA, USA). Data were 

generated by the Human Genotyping facility (HugeF) of 
ErasmusMC, The Netherlands.

Quality control and normalization
For all samples, Illumina 450k array data passed quality 
control using MethylAid [32]. Sample mix-ups between 
donors were excluded on the basis of inferred geno-
types using OmicsPrint [33]. Probes with detection  P 
value > 0.01, bead number < 3 or zero intensity in at least 
one sample were removed (46718 probes were removed, 
resulting in a final data set of 440292 CpGs). Data were 
normalized using minfi’s [34] functional normalization 
[35] (five principal components). A workflow for the 
quality control and normalization pipeline is available at 
https ://molep i.githu b.io/DNAmA rray_workf low/index 
.html. Data to be submitted to EGA (EGAS00001003668).

Statistical analyses
All statistical analyses were performed using R 3.4.1 [36]. 
The paired epigenome-wide analysis was performed on 
methylation beta values using a linear mixed model with 
donor as random effect for each CpG using the lmer and 
aov functions in lme4 [37] with P-values calculated using 
Satterthwaite’s approximation [38]. Differentially meth-
ylated CpGs (DMCs) were obtained after adjusting for 
multiple testing using the Benjamini–Hochberg method 
and deciding on a mean-square cutoff of 0.0025; a thresh-
old that would imply a 5% difference in methylation if 
only two conditions were considered. Principal compo-
nents were obtained using the prcomp function in stats 
to visualize the characteristics of the DNA methylation 
data.

Nearest genes were found based on distance to the 
nearest transcription start or end site. Gene ontology 
enrichment was performed using Metascape [39] (only 
GO Biological Processes), and upstream regulators 
were found using Ingenuity Pathway Analysis (IPA) [40] 
(standard settings). Blueprint RNA-seq data [17] were 
downloaded for monocytes (donors: C000S5, C0010K, 
C0011I, C001UY and C004S) and macrophages (donors: 
C005VG, S001S7, S0022I and S00390) and transcription 
values (logTPM) were averaged for each cell type. Dis-
tributions of transcription levels were compared using a 
Wilcoxon signed-rank test.

Blueprint ChIP-seq peak files were downloaded for 
histon marks H3K4me1, H3K4me3, H3K27ac and 
H3K27me3 for 5 donors (C005VG, S001S7, S0022I, 
S00390 and S01F8K) with both monocyte and mac-
rophage data [17]. Peak files were converted to a binary 
format (0 = no peak, 1 = peak), and ChromHMM [41] 
was used on these converted data to learn nine chromatin 
states (standard settings), which were labeled according 

https://molepi.github.io/DNAmArray_workflow/index.html
https://molepi.github.io/DNAmArray_workflow/index.html
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to Roadmap reference nomenclature [24]. States includ-
ing the H3K27ac mark, not covered in Roadmap, were 
designated using “active” (e.g., active enhancer, active 
transcription start site). For each cell type, chromatin 
states at the genomic position of measured CpGs were 
based on a majority call (same chromatin state in at least 
3/5 donors); 5855 states were called in monocytes of the 
5870 monocyte-to-macrophage differentiation DMCs, 
5865 in macrophages. Enrichments for DMCs in chroma-
tin states were calculated using Fisher’s exact test.

Promoter capture Hi-C interactions [16] were down-
loaded for monocytes and macrophages and enrichments 
were performed using Fisher’s exact test with P-values 
capped at 2.2 ×  10−16, the lowest value that can be repre-
sented accurately [42].

Blueprint whole-genome bisulfite sequencing (WGBS) 
data were downloaded for monocytes (donors: C000S5, 
C0010K, C001UY and S007G7) and macrophages 
(donors: C005VG, S001S7, S0022I and S00390) [17] 
and methylation beta values were averaged for each cell 
type. DMRs were obtained using the following approach: 
the WGBS CpG overlapping with the DMC discovered 
in 450k data and each subsequent WGBS CpG both 
upstream or downstream was withing 1  Mb and had 
a ≥ 5% difference in methylation in the same direction.

Blueprint DNAseI hypersensitive sites sequencing peak 
files were downloaded and converted to a binary format 
(0/1) for monocytes (donors: C0010K, C0011I, C001UY, 
C00408, S00T4H, S00T5F, S00T6D, S00TA5, S00TT4, 
S00UKI, S00UME, S00YK2, S00YRP, S00YVH, S0100 M, 
S010B0, S010MF, S010P9, S010VY, S01238, S01246, 
S0130A, S01342, S0137X, S013CN and S013DL) and 
macrophages (donors: C005VG, C006UE, S001S7 and 
S0022I) [17]. For each cell type, a DNAseI hypersensitive 
site was called at a genomic position using majority call 
(≥ 13 in monocytes, ≥ 2 in macrophages). Enrichments 
were calculated using Fisher’s exact test with P-values 
capped at 2.2 ×  10−16, the lowest value that can be repre-
sented accurately [42].

Motif analysis for transcription factor binding sites 
was performed using HOMER [25] with a 50 bp window 
around the DMCs. A random set of 50000 non-DMCs 
was used as a background. C/EBP and PU.1 ChIP-seq 
peak files [28] were downloaded for monocytes and mac-
rophages, and enrichments were calculated using Fisher’s 
exact test for DMCs at motif locations.

Additional files

Additional file 1: Table S1 Antibodies used for flow cytometry analysis. 
Figure S1. Monocytes were successfully differentiated to macrophages. 
Figure S2. DNA methylation clusters on donor and monocyte versus 

macrophage. Figure S3. Distribution of beta values is generally uniform 
from ~0% to 100% methylation. Figure S4. There are 5 DMCs where the 
change in DNA methylation is contributed to more than one macrophage 
type. Figure S5. Differentially methylated CpGs were validated using 
public data. Figure S6. Transcription of genes was reduced near gain 
DMCs and increased near loss DMCs. Figure S7. Pathway analysis of LPS/
IFNy macrophage-specific activation. Figure S8. Methylation differences 
for the differentially methylated CpGs were generally concordant with 
public WGBS data. Figure S9. Gain-DMC cg01059398, located in TNFSF10, 
is associated a DNAseI hypersensitive site and gain of PU.1 binding during 
monocyte-tomacrophage differentiation. 

Additional file 2: Table S2 Differentially methylated CpGs (DMCs). The 
table includes all 5870 DMCs with the characteristics for each posi-
tion. Column 1: CpG identifier, Column 2-4: Effect size (mean squares), 
F-statistic and P-value of the overall effect, Column 5-10: Partial t-statistics 
for monocytes, macrophages and activated macrophages (LPS/IFNγ, IL-4, 
oxLDL and acLDL), Column 11: Cell type contributing most to the overall 
effect based on partial t-statistics, Column 12: Gain or loss of methylation 
during monocyte-to-macrophage differentiation or during subsequent 
macrophage activation, Column 13: Nearest gene, Column 14-15: Tran-
scription levels of nearest gene in monocytes and macrophages (logTPM), 
Column 16-17: Chromatin states in monocytes and macrophages based 
on histone modifications, Column 18-20: Number, length (bp) and mean 
methylation (%) of differentially methylated CpGs in region (DMR), Col-
umn 21-22: Overlap with DNAseI hypersensitive sites in monocytes and 
macrophages. 

Additional file 3: Table S3 Chromatin states in monocytes and mac-
rophages. Chromatin states in both monocytes and macrophages defined 
using a hidden Markov model based on H3K4me1, H3K4me3, H3K27ac 
and H3K27me3 histone marks available from public BLUEPRINT data.
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S01F8K) with both monocyte and macrophage data [17]. Peak files were con-
verted to a binary format (0 = no peak, 1 = peak). Blueprint whole-genome 
bisulfite sequencing (WGBS) data were downloaded for monocytes (donors: 
C000S5, C0010K, C001UY and S007G7) and macrophages (donors: C005VG, 
S001S7, S0022I and S00390) [17] and methylation beta values were averaged 
for each cell type. Blueprint DNAseI hypersensitive sites sequencing peak 
files were downloaded and converted to a binary format (0/1) for monocytes 
(donors: C0010K, C0011I, C001UY, C00408, S00T4H, S00T5F, S00T6D, S00TA5, 

https://doi.org/10.1186/s13072-019-0279-4
https://doi.org/10.1186/s13072-019-0279-4
https://doi.org/10.1186/s13072-019-0279-4
https://molepi.github.io/DNAmArray_workflow/index.html
https://molepi.github.io/DNAmArray_workflow/index.html
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S00TT4, S00UKI, S00UME, S00YK2, S00YRP, S00YVH, S0100 M, S010B0, S010MF, 
S010P9, S010VY, S01238, S01246, S0130A, S01342, S0137X, S013CN and 
S013DL) and macrophages (donors: C005VG, C006UE, S001S7 and S0022I) [17].
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